首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated colony-level foraging activities of Diacamma sp., a queenless ponerine ant, in the field. Our aim was to elucidate the presence of any pattern in foraging activity in field colonies in relation to: (1) circadian rhythm, (2) physical environmental conditions such as extreme temperatures, (3) seasonality, and (4) short-term foraging efficiency (i.e. the success ratio in obtaining food per foraging trip). Colony-level foraging activity tended to be diurnal throughout the year, as more foraging trips were observed in the daytime. Although temperature had no linear effect on overall foraging activity, lower temperature precluded foraging at night. Overall, foraging was more frequent at times of day when foraging efficiency was high, but this relationship was weak and varied seasonally. Interestingly, we found that hourly foraging efficiency and hourly foraging activity were negatively correlated in autumn, the season when the average foraging efficiency peaked, whereas they were positively correlated in winter and spring.  相似文献   

2.
Understanding circadian foraging rhythms activity of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae) foragers at different temperatures is an important step towards developing control measures in Integrated Pest Management (IPM) programs. In this study, the circadian foraging rhythm activities of S. invicta foragersat different temperature were investigated under laboratory and field conditions. Results indicated that the foraging activity increased after sunrise, and maximum foraging occurred at 14:00 (foraging rate was 69.22 ± 0.57 and 72.58 ± 1.15 foragers/min in the first and second year, respectively) in the tea fields of Guangzhou during autumn. Furthermore, foragers demonstrated circadian rhythms and exhibited a unimodal after 24 h. A significant correlation was found between foraging activity and temperature. S. invicta colonies were active at moderate soil temperatures (approximately 26.65 °C to 29.24 °C). The preferred temperature of the colonies was 26 °C, followed by 22 °C and 18 °C in the laboratory. The individual S. invicta activity was maximum at 17:00 (18.67 ± 1.66 times /10 min) and minimum at 5:00 (8.33 ± 2.51 times/10 min) at 26 °C. The fluctuating temperature had a significant impact on individual locomotor activity (r = 0.8979, P < 0.01) but did not alter the rhythm activity. Our results demonstrated that temperature might play an important role in circadian foraging rhythms activity of S. invicta. These results may have implications for the development of more effective fire ant management strategies.  相似文献   

3.
Temperature and the pollinating activity of social bees   总被引:1,自引:0,他引:1  
Abstract.
  • 1 Thermal constraints on flight acivity limit the pollinating effectiveness of bees. Each species of social bee has a microclimatic ‘window’ within which foraging flight can be sustained.
  • 2 To predict whether a given species of social bee is worth testing as a pollinator in a given climate, it is useful to know at least the lower limits of that microclimatic ‘window’. We consider how information from a series of bee counts through a day can be used to characterize a bee species in terms of activity/microclimate relations as a basis for predicting the diel pattern of foraging activity of a bee introduced into a new climate as a pollinator.
  • 3 We discuss the relative merits of bee counts at a foraging patch and counts based on hive traffic as indices of the proportion of bees active.
  • 4 We suggest that the activity/microclimate relations of a species be expressed in terms of the lower threshold black globe temperature for flight activity. Black globe temperature, Tg, is easily measured with inexpensive equipment, and can substitute for measurements of ambient temperature and radiation as a predictor of diel patterns of bee activity.
  • 5 We use examples of field data to explore the relationship between microclimate and activity for the honeybee Apis mellifera and several species of bumblebee, Bombus. Regression analysis is used to relate activity to Tg and to identify the lower temperature threshold for activity from field bee counts.
  • 6 In field studies analysed here, the bumblebees Bombus terrestrisllucorum, B.pascuorum and B.hortorum began foraging at lower temperatures than honey-bees or B.lapidarius.
  相似文献   

4.
Foraging patterns of juvenile western rock lobster Panulirus cygnus George were investigated in the field by tracking lobsters with electromagnetic tags for up to 3 wk. Most foraging activity begins in response to changes in light levels associated with dusk and not by diurnal changes in water temperature or currents. Similarly, lobsters return from foraging around dawn when light levels start to increase. Foraging activity was constant throughout the night, and males were more active than females. Lobsters usually moved at a rate of ≈ l m · min −1 at night, although sometimes they travelled up to 18m· min−1 when walking over bare sand. They often lived on one reef but travelled to forage on seagrass beds in front of another reef, sometimes visiting a den on that reef. Some lobsters used several dens on different reefs during the 3 wk of observation. Although lobsters foraged in both of the two main structural varieties of seagrass beds, Amphibolis and Heterozostera with Halophila, they foraged for longer periods in the Heterozostera with Halophila beds. Foraging ranges varied within and between individuals although an individual lobster might forage in the same general area on a few successive nights or even up to several weeks.  相似文献   

5.
Patterns of time allocation to different activities can help reveal how natural selection has solved optimality problems that involve simultaneous environmental constraints. To investigate how time budgets of desert birds are affected by ambient temperature, lack of drinking water and low food availability, we provided food and water to hoopoe-larks,Alaemon alaudipes , in the Arabian Desert during years in which no larks reared young. We followed birds continuously from sunrise to sunset on unsupplemented and supplemented days, and recorded their behaviour every 15 s. Taking into account the variation in temperature between days, hoopoe-larks decreased foraging time by 13-29% of total daytime, and increased resting and preening time by 7-16 and 8%, respectively, when they had access to supplemental food. When birds had access to extra food, they began and ended their midday resting period when shade temperature was on average 2.2°C lower, and operative temperature was on average 3.1°C lower, than on unsupplemented days, a significant effect of food supplementation. We concluded that birds optimized time spent on foraging and thermoregulating based on a combination of physiological state variables, including body temperature, hydration state and level of energy reserves. Our results do not support a previous hypothesis that activity budgets of desert birds are dictated by thermal constraints alone.  相似文献   

6.
The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats.  相似文献   

7.
Capsule: Barn Swallows Hirundo rustica were more likely to forage along arable field margins that were enhanced with wildflowers or legumes than control grass margins.

Aims: To determine if foraging Barn Swallows displayed preferences for specific arable field boundary habitats (grass margins versus floristically enhanced margins) that were managed as part of an agri-environment scheme. We also aim to determine how Barn Swallow food abundance related to these habitats.

Methods: Two foraging activity surveys took place on all grass and floristically enhanced margins (n?=?56) present within the 600 m foraging range of seven Barn Swallow colonies during June and July 2016. Margin habitat use was measured by recording the presence/absence of foraging individuals during surveys, the total number of individuals and by calculating an index of foraging activity. Habitat information relating to adjacent boundary type, transect crop type and neighbouring crop type were also recorded.

Results: Foraging Barn Swallows were significantly more likely to be recorded when survey transects included a floristically enhanced margin, but there was no significant impact of floristically enhanced margins on the total number of individuals recorded or on the index of foraging activity. Foraging activity was higher along grass verges and hedgerows when compared to treelines and was positively related to length weighted Diptera abundance (a measure of food biomass).

Conclusion: Our results suggest that there may be a role for floristically enhanced margins in the conservation of Barn Swallows on arable farmland. More research, however, is needed to determine whether invertebrate-rich agri-environment scheme habitats can influence colony size or improve the breeding success of this species.  相似文献   

8.
We used live-trapping and foraging to test for the effect of habitat selection and diet on structuring a community of six small mammals and one bird within the Soutpansberg, South Africa. We established grids that straddled adjacent habitats: woodland, rocky hillside, and grassland. Trapping and foraging were used to estimate abundance, habitat use, and species-specific foraging costs. The species with the highest abundance and foraging activity in a habitat, activity time, or food was considered the most efficient and presumed to have a competitive advantage. All species exhibited distinct patterns of spatial and temporal habitat preference which provided the main mechanism of coexistence, followed by diet selection. The study species were organized into three assemblages (α diversity): grassland, Rhabdomys pumilio, Dendromus melanotis, and Mus minutoides.; woodland, Aethomys ineptus and Micaelamys namaquensis; and rock-dwelling, M. namaquensis and Elephantulus myurus. Francolinus natalensis foraged in open rocky areas and under wooded islands within the grassland. Species organization across the habitats suggested that feeding opportunities are available within all habitats; however, distinct habitat preferences resulted from differing foraging aptitudes and efficiencies of the competing species. At Lajuma, species distribution and coexistence are promoted through distinct habitat preferences that were shaped by competition and species-specific foraging costs. The combination of trapping and foraging provided a mechanistic approach that integrates behavior into community ecology by ‘asking’ the animal to reveal its perspective of the environment. Using spatial and temporal foraging decisions—as behavioral indicators—enables us to guide our understanding for across-taxa species coexistence.  相似文献   

9.
Climate change within the UK will affect winter starvation risk because higher temperatures reduce energy budgets and are likely to increase the quality of the foraging environment. Mass regulation in birds is a consequence of the starvation–predation risk trade-off: decreasing starvation risk because of climate change should decrease mass, but this will be countered by the effects of predation risk, because high predation risk has a negative effect on mass when foraging conditions are poor and a positive effect on mass when foraging conditions are good. We tested whether mass regulation in great tits (Parus major) across the UK was related to temporal changes in starvation risk (winter temperature 1995–2005) and spatial changes in predation risk (sparrowhawk Accipiter nisus abundance). As predicted, great tits carried less mass during later, warmer, winters, demonstrating that starvation risk overall has decreased. Also, the effects of predation risk interacted with the effects of temperature (as an index of foraging conditions), so that in colder winters higher sparrowhawk abundance led to lower mass, whereas in warmer, later, winters higher sparrowhawk abundance led to higher mass. Mass regulation in a small bird species may therefore provide an index of how environmental change is affecting the foraging environment.  相似文献   

10.
When foraging, animals can maximize their fitness if they are able to tailor their foraging decisions to current environmental conditions. When making foraging decisions, individuals need to assess the benefits of foraging while accounting for the potential risks of being captured by a predator. However, whether and how different factors interact to shape these decisions is not yet well understood, especially in individual foragers. Here we present a standardized set of manipulative field experiments in the form of foraging assays in the tropical lizard Anolis cristatellus in Puerto Rico. We presented male lizards with foraging opportunities to test how the presence of conspecifics, predation-risk perception, the abundance of food, and interactions among these factors determines the outcome of foraging decisions. In Experiment 1, anoles foraged faster when food was scarce and other conspecifics were present near the feeding tray, while they took longer to feed when food was abundant and when no conspecifics were present. These results suggest that foraging decisions in anoles are the result of a complex process in which individuals assess predation risk by using information from conspecific individuals while taking into account food abundance. In Experiment 2, a simulated increase in predation risk (i.e., distance to the feeding tray) confirmed the relevance of risk perception by showing that the use of available perches is strongly correlated with the latency to feed. We found Puerto Rican crested anoles integrate instantaneous ecological information about food abundance, conspecific activity and predation risk, and adjust their foraging behavior accordingly.  相似文献   

11.
Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced.  相似文献   

12.
Time management of truly wild hamsters was investigated in their natural habitat in Alashan desert, Inner Mongolia, China during summer of 2009, 2010, and 2012. Duration of activity outside their burrows, duration of foraging walks, and nocturnal inside stays were analyzed with the aim to elucidate impact of moon, ambient, and soil temperature. Animal data were determined using radio frequency identification (RFID) technique; for that purpose, individuals were caught in the field and marked with passive transponders. Their burrows were equipped with integrated microchip readers and photosensors for the detection of movements into or out of the burrow. Lunar impact was analyzed based on moon phase (full, waning, new, and waxing moons) and moon disk size. A prolongation of aboveground activity was shown with increasing moon disk size (Spearman ρ?=?0.237; p?=?0.025) which was caused by earlier onsets (ρ?=?0.161; p?=?0.048); additionally, foraging walks took longer (Pearson r?=?0.037; p?=?0.037). Temperature of different periods of time was analyzed, i.e., mean of whole day, of the activity phase, minimum, and maximum. Moreover, this was done for the current day and the previous 3 days. Overall, increasing ambient and soil temperatures were associated with shortening of activity by earlier offsets of activity and shorter nocturnal stays inside their burrows. Most influential temperatures for activity duration were the maximum ambient temperature, 3 days before (stepwise regression analysis R?=?0.499; R 2?=?0.249; F?=?7.281; p?=?0.013) and soil temperature during activity phase, 1 day before (R?=?0.644; R 2?=?0.283; F?=?7.458; p?=?0.004).  相似文献   

13.
The stochasticity in food quality and availability, and physical trail characteristics experienced by leaf-cutter ants, may favour individual flexibility in load-mass selection so as to forage effectively. The present study aimed to confirm previous evidence, from Atta cephaoltes foragers, of variable load-mass selection in response to steep inclines and declines in the leaf-cutter ant Acromyrmex octospinosus. The foraging trail gradient of a captive colony of Ac. octospinosus was manipulated by altering the position of a foraging platform relative to the nest box. The results indicate an effect of steep gradients on walking speed and variation in load mass in relation to gradient as a result of individual plasticity, not recruitment of different-sized individuals. Ants selected heavier loads when returning to the nest vertically downwards than when returning horizontally or vertically upwards. These results are discussed with reference to foraging performance. Walking speed was considerably reduced on upward returns to the nest, but was also slower when travelling vertically downwards compared with horizontal trails, suggesting vertical trails per se impact on the time costs of foraging. Differences in load-mass selection were evident from the onset of foraging and did not change significantly over the course of 24 h, suggesting this behaviour was based on individual experience, rather than colony-level information feedback. The present study has demonstrated that Ac. octospinosus foragers are capable of individual flexibility in load-mass selection in response to a physical trail characteristic that is pertinent to their natural habitat and is a factor seldom considered in theoretical foraging models.  相似文献   

14.
Bats are known to forage and commute close to vegetation structures when moving across the agricultural matrix, but the role of isolated landscape elements in arable fields for bat activity is unknown. Therefore, we investigated the influence of small isolated ponds which lie within arable fields close to vegetation structures on the flight and foraging activity of bats. Additionally, we compared species-specific activity measures between forest edges and linear structures such as hedgerows. We repeatedly recorded bat activity using passive acoustic monitoring along 20 transects extending from the vegetation edge up to 200 m into the arable field (hereafter: edge-field interface) with a small pond present at five transects per edge type (linear vs. forest). Using generalized linear mixed effect models, we analyzed the effects of edge type, pond presence and the season on species-specific flight and foraging activity within the edge-field interface. We found a higher flight activity of Nyctalus noctula and Pipistrellus pygmaeus above the arable field when a pond was present. Furthermore, Pipistrellus nathusii and Pipistrellus pipistrellus foraged more frequently at forest edges than at linear structures (e.g. hedgerows). Additionally, we found three major patterns of seasonal variation in the activity of bats along the edge-field interface. This study highlights the species-specific and dynamic use of forest and hedgerow or tree line edges by bats and their importance for different bat species in the agricultural landscape. Further, additional landscape elements such as small isolated ponds within arable fields might support the activity of bats above the open agricultural landscape, thereby facilitating agroecosystem functioning. Therefore, additional landscape elements within managed areas should be restored and protected against the conversion into arable land and better linked to surrounding landscape elements in order to efficiently support bats within the agroecosystem.  相似文献   

15.
  1. Here, I describe foraging behavior of goldcrests, Regulus regulus, based on eight years of field observation in a coniferous forest dominated by Norway spruce Picea abies in southwestern Sweden. The aim was to test predictions from theory on the choice of optimal foraging modes in relation to food availability.
  2. Mortality from early November to early March amounts to 70–86% among goldcrests in the resident population, suggesting they are food‐limited in winter. Food‐limitation manifests itself as a shortage of time for foraging. It promotes the use of foraging methods that minimize the daily foraging time by maximizing the rate of net energy gain. It increases both individual survival and competitiveness. Elimination of competitors by exploitation occurs when an individual is able to support itself, while food density in the habitat is reduced to levels at which others cannot.
  3. Theory shows that when food is abundant, high‐efficiency energy‐expensive search and capture methods give shorter daily foraging times than low‐efficiency low‐cost methods, whereas the latter gives shorter daily foraging times at food shortages (Norberg 2021). Hovering flight is extremely expensive in energy but results in high foraging efficiency. Hover‐foraging should therefore be used when food is abundant.
  4. In autumn, there were 85.3 arthropods per kilogram of branch mass, as opposed to 12.9 in spring. The numerical decline of arthropods, their fat metabolism, and size‐biased predation by birds reduced the spring density of food for goldcrests to less than 15.1% of the autumn density.
  5. Hover‐foraging occurred 5.29 times per minute in autumn but only 0.23 times per minute in spring, which is 4.4% of the autumn frequency.
  6. Foraging conditions are favorable at midsummer because of long days, high temperatures, and an abundance of arthropod prey. Parent birds that were feeding fledglings gathered food at a high rate and hovered 5.42 times per minute. But adults with no young to feed were not compelled to maximize the rate of net energy gain and only hover‐foraged 0.52 times per minute, which is 10% of that of providers.
  7. These results are highly consistent from year to year and in qualitative agreement with theory.

Goldcrests minimize daily foraging time by using high‐efficiency energy‐expensive hover‐foraging when food is abundant but low‐efficiency low‐cost methods at food shortages.  相似文献   

16.
Herbivores are squeezed between the two omnipresent threats of variable food quality and natural enemy attack, but these two factors are not independent of one another. The mechanisms by which organisms navigate the dual challenges of foraging while avoiding predation are poorly understood. We tested the effects of plant defense and predation risk on herbivory in an assemblage of leaf-chewing insects on Solanum lycopersicum (tomato) that included two Solanaceae specialists (Manduca sexta and Leptinotarsa decemlineata) and one generalist (Trichoplusia ni). Defenses were altered using genetic manipulations of the jasmonate phytohormonal cascade, whereas predation risk was assessed by exposing herbivores to cues from the predaceous stink bug, Podisus maculiventris. Predation risk reduced herbivore food intake by an average of 29% relative to predator-free controls. Interestingly, this predator-mediated impact on foraging behavior largely attenuated when quantified in terms of individual growth rate. Only one of the three species experienced lower body weight under predation risk and the magnitude of this effect was small (17% reduction) compared with effects on foraging behavior. Manduca sexta larvae, compensated for their predator-induced reduction in food intake by more effectively converting leaf tissue to body mass. They also had higher whole-body lipid content when exposed to predators, suggesting that individuals convert energy to storage forms to draw upon when risk subsides. In accordance with expectations based on insect diet breadth, plant defenses tended to have a stronger impact on consumption and growth in the generalist than the two specialists. These data both confirm the ecological significance of predators in the foraging behavior of herbivorous prey and demonstrate how sophisticated compensatory mechanisms allow foragers to partially offset the detrimental effects of reduced food intake. The fact that these mechanisms operated across a wide range of plant resistance phenotypes suggests that compensation is not always constrained by reduced food quality.  相似文献   

17.
The genera Atta and Acromyrmex are often grouped as leaf-cutting ants for pest management assessments and ecological surveys, although their mature colony sizes and foraging niches may differ substantially. Few studies have addressed such interspecific differences at the same site, which prompted us to conduct a comparative study across six sympatric leaf-cutting ant species in Central Panama. We show that foraging rates during the transition between dry and wet season differ about 60 fold between genera, but are relatively constant across species within genera. These differences appear to match overall differences in colony size, especially when Atta workers that return to their nests without leaves are assumed to carry liquid food. We confirm that Panamanian Atta specialize primarily on tree-leaves whereas Acromyrmex focus on collecting flowers and herbal leaves and that species within genera are similar in these overall foraging strategies. Species within genera tended to be spaced out over the three habitat categories that we distinguished (forest, forest edge, open grassland), but each of these habitats normally had only a single predominant Atta and Acromyrmex species. We measured activities of twelve fungus garden decomposition enzymes, belonging to the amylases, cellulases, hemicellulases, pectinases and proteinases, and show that average enzyme activity per unit of fungal mass in Atta gardens is lower than in Acromyrmex gardens. Expression profiles of fungal enzymes in Atta also appeared to be more specialized than in Acromyrmex, possibly reflecting variation in forage material. Our results suggest that species- and genus-level identities of leaf-cutting ants and habitat-specific foraging profiles may give predictable differences in the expression of fungal genes coding for decomposition enzymes.  相似文献   

18.
Foraging, as an energy-consuming behavior, is very important for colony survival in termites. How energy metabolism related to glucose decomposition and adenosine triphosphate (ATP) production influences foraging behavior in termites is still unclear. Here, we analyzed the change in energy metabolism in the whole organism and brain after silencing the key metabolic gene isocitrate dehydrogenase (IDH) and then investigated its impact on foraging behavior in the subterranean termite Odontotermes formosanus in different social contexts. The IDH gene exhibited higher expression in the abdomen and head of O. formosanus. The knockdown of IDH resulted in metabolic disorders in the whole organism. The dsIDH-injected workers showed significantly reduced walking activity but increased foraging success. Interestingly, IDH knockdown altered brain energy metabolism, resulting in a decline in ATP levels and an increase in IDH activity. Additionally, the social context affected brain energy metabolism and, thus, altered foraging behavior in O. formosanus. We found that the presence of predator ants increased the negative influence on the foraging behavior of dsIDH-injected workers, including a decrease in foraging success. However, an increase in the number of nestmate soldiers could provide social buffering to relieve the adverse effect of predator ants on worker foraging behavior. Our orthogonal experiments further verified that the role of the IDH gene as an inherent factor was dominant in manipulating termite foraging behavior compared with external social contexts, suggesting that energy metabolism, especially brain energy metabolism, plays a crucial role in regulating termite foraging behavior.  相似文献   

19.
20.
Summary It is to be concluded that the nocturnal ant C. maculatus aegyptiacus Emery starts foraging with the sun-set and its field activities are stopped with the sun-rise. The level of foraging activity showed two peaks at 1–3 hours after evening start and before morning stop.The differences in temperature and relative humidity at evening initiation and morning cessation of foraging activities suggest that both temperature and relative humidity have a marked effect on the evening start and morning stop of field activities.Although the atmospheric pressure, wind velocity and dew may have affected the rate of trail activity they appeared to have, within the ranges obtained, a very slight influence upon the evening start or morning stop of foraging activity.Cloud cover is not involved in the evening initiation or morning cessation of trail activity since it happened that the sky was almost always very clear at both evenings and mornings of all the nights of investigation from May to October but, the probability that the rate of nocturnal foraging activity of C. maculatus aegyptiacus might be affected by the cloud cover through the reduction of the moonlight exists. It is hoped to examine this in more detail at a later date.Zur Zeit: Zoologisches Institüt, 8 München 2, Luisenstraße 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号