首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Ranunculus L. represents the largest genus within Ranunculaceae, comprising more than 600 species with a worldwide distribution. However, there are still many gaps in our knowledge of the infrageneric taxonomy and evolution of Ranunculus. In this regard, intraspecific variation of the polyploid complex Ranunculus parnassiifolius remains under discussion. To reconstruct the biogeographical history of the polyploid complex R. parnassiifolius, 20 populations distributed throughout the Cantabrian Mountains, Pyrenees, and Alps were investigated. Phylogenetic studies were based on nuclear internal transcribed spacers (ITS) and plastid (rpl32‐trnL, rps16‐trnQ) sequence data, analysed using Bayesian approaches as well as the evolution of morphological characters. Additionally, biogeographical patterns were conducted using statistical dispersal–vicariance analysis. The analyses presented here support the recognition of two evolutionary independent units: R. cabrerensis sensu lato (s.l.) and R. parnassiifolius s.l. Furthermore gradual speciation depending on the biogeographical territory is proposed, and optimal reconstructions have probably favoured the ancestor of Ranunculus parnassiifolius as originating in the Iberian Peninsula. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 477–493.  相似文献   

2.
  总被引:3,自引:0,他引:3  
Aptostichus simus is a trapdoor spider endemic to the coastal dunes of central and southern California and, on morphological grounds, is recognized as a single species. Mitochondrial DNA 16S rRNA sequences demonstrate that most populations are fixed for the same haplotype and that the population haplotypes from San Diego County, Los Angeles County, Santa Rosa Island, and Monterey County are extremely divergent (6-12%), with estimated separation times ranging from 2 to 6 million years. A statistical cluster analysis of morphological features demonstrates that this genetic divergence is not reflected in anatomical features that might signify ecological differentiation among these lineages. The species status of these divergent populations of A. simus depends upon the species concept utilized. If a time-limited genealogical perspective is employed, A. simus would be separated at the base into two genetically distinct species. This study suggests that species concepts based on morphological distinctiveness, in spider groups with limited dispersal capabilities, probably underestimate true evolutionary diversity.  相似文献   

3.
4.
榉属(Zelkova)是包含6个种的榆科小属, 呈东亚、西亚和南欧间断分布。该文基于DNA序列trnL-trnF和ITS构建了榉属的分子系统发育树, 大体上把此属分为3个分支, 分别对应东亚、西亚和南欧的种类, 与前人仅依据ITS序列的结果不同。生物地理的扩散和隔离分化分析(DIVA)表明, 榉属的原始祖先分布区可能是欧亚北温带, 包括了东亚、西亚和南欧的某个大的区域。分化过程以隔离分化为主要特征, 即3个分布区域是逐步隔离分化的。由于东亚的物种多样性, 北太平洋有可能是起源中心。榉属的现代分布格局可能主要是由于渐新世发生的古地中海西退、中新世发生的青藏高原大范围隆升, 以及第四纪冰川活动引起的分布区的收缩。  相似文献   

5.
Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses.  相似文献   

6.
    
Taxonomy of the brown algal genus Dictyota has a long and troubled history. Our inability to distinguish morphological plasticity from fixed diagnostic traits that separate the various species has severely confounded species delineation. From continental Europe, more than 60 species and intraspecific taxa have been described over the last two centuries. Using a molecular approach, we addressed the diversity of the genus in European waters and made necessary taxonomic changes. A densely sampled DNA data set demonstrated the presence of six evolutionarily significant units (ESUs): Dictyota dichotoma (Huds.) J. V. Lamour., D. fasciola (Roth) J. V. Lamour., D. implexa J. V. Lamour., D. mediterranea (Schiffn.) G. Furnari, D. spiralis Mont., and the newly described D. cyanoloma sp. nov., which was previously reported as D. ciliolata from the Mediterranean Sea. Species distributions, based on DNA‐confirmed occurrence records, indicate that all species are geographically confined to the NE Atlantic Ocean with the exception of D. dichotoma and D. implexa, which also occur in South Africa and Bermuda, respectively. To investigate potential hybridization between D. dichotoma and D. implexa, which were previously shown to be sexually compatible in culture, we compiled and analyzed sets of mitochondrial, plastid, and nuclear markers to detect putative hybrids or introgression in natural populations. Failure to detect natural hybrids indicates that effective pre‐ and postzygotic isolation mechanisms are at play in natural populations and supports the by‐product hypothesis of reproductive isolation.  相似文献   

7.
    
Diversification rates and evolutionary trajectories are known to be influenced by phenotypic traits and the geographic history of the landscapes that organisms inhabit. One of the most conspicuous traits in butterflies is their wing color pattern, which has been shown to be important in speciation. The evolution of many taxa in the Neotropics has also been influenced by major geological events. Using a dated, species‐level molecular phylogenetic hypothesis for Preponini, a colorful Neotropical butterfly tribe, we evaluated whether diversification rates were constant or varied through time, and how they were influenced by color pattern evolution and biogeographical events. We found that Preponini originated approximately 28 million years ago and that diversification has increased through time consistent with major periods of Andean uplift. Even though some clades show evolutionarily rapid transitions in coloration, contrary to our expectations, these shifts were not correlated with shifts in diversification. Involvement in mimicry with other butterfly groups might explain the rapid changes in dorsal color patterns in this tribe, but such changes have not increased species diversification in this group. However, we found evidence for an influence of major Miocene and Pliocene geological events on the tribe''s evolution. Preponini apparently originated within South America, and range evolution has since been dynamic, congruent with Andean geologic activity, closure of the Panama Isthmus, and Miocene climate variability.  相似文献   

8.
9.
    
Abstract A molecular phylogenetic study of Bystropogon L'Her. (Lamiaceae) is presented. We performed a cladistic analysis of nucleotide sequences of the internal transcribed spacers (ITS), of the nuclear ribosomal DNA, and of the trnL gene and trnL-trnF intergenic spacer of the chloroplast DNA. Bystropogon odoratissimus is the only species endemic to the Canary Islands that occurs in the three palaeo-islands of Tenerife. This species is not part of an early diverging lineage of Bystropogon and we suggest that it has a recent origin. This phylogenetic pattern is followed by most of the species endemic to the palaeo-islands of Tenerife. The two sections currently recognized in Bystropogon form two monophyletic groups. Taxa belonging to the section Bystropogon clade show interisland colonization limited to the Canary Islands with ecological shifts among three ecological zones. Taxa from the section Canariense clade show interisland colonization both within the Canary Islands and between the Canary Islands and Madeira. Speciation events within this clade are mostly limited to the laurel forest. The genus has followed a colonization route from the Canaries towards Madeira. This route has also been followed by at least five other plant genera with species endemic to Macaronesia. Major incongruences were found between the current infrasectional classification and the molecular phylogeny, because the varieties of Bystropogon origanifolius and Bystropogon canariensis do not form two monophyletic groups. The widespread B. origanifolius appears as progenitor of the other species in section Bystropogon with a more restricted distribution.  相似文献   

10.
11.
    
Stingless bees (Meliponini) are one of only two highly eusocial bees, the other being the well studied honey bee (Apini). Unlike Apini, with only 11 species in the single genus Apis, stingless bees are a large and diverse taxon comprising some 60 genera, many of which are poorly known. This is the first attempt to infer a phylogeny of the group that includes the world fauna and extensive molecular data. Understanding the evolutionary relationships of these bees would provide a basis for behavioural studies within an evolutionary framework, illuminating the origins of complex social behaviour, such as the employment of dance and sound to communicate the location of food or shelter. In addition to a global phylogeny, we also provide estimates of divergence times and ancestral biogeograhic distributions of the major groups. Bayesian and maximum likelihood analyses strongly support a principal division of Meliponini into Old and New World groups, with the Afrotropical+Indo‐Malay/Australian clades comprising the sister group to the large Neotropical clade. The meliponine crown clade is inferred to be of late Gondwanan origin (approximately 80 Mya), undergoing radiations in the Afrotropical and Indo‐Malayan/Australasian regions, approximately 50–60 Mya. In the New World, major diversifications occurred approximately 30–40 Mya. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 206–232.  相似文献   

12.
    
Madagascar is renowned for its unparalleled species richness and levels of endemism, which have led, in combination with species extinction caused by an unprecedented rate of anthropogenic deforestation, to its designation as one of the most important biodiversity hotspots. It is home to 10 650 species (84% endemic) of angiosperms in 1621 genera (19% endemic). During the last two centuries, botanists have focused their efforts on the provision of a taxonomic framework for the flora of the island, but much remains to be investigated regarding the evolutionary processes that have shaped Madagascan botanical diversity. In this article, we review the current state of phylogenetic and biogeographical knowledge of the endemic angiosperm genera. We also propose a new stratified biogeographical model, based on palaeogeographical evidence, allowing the inference of the spatio‐temporal history of Madagascan taxa. The implications of past climate change and extinction events on the evolutionary history of the endemic genera are also discussed in depth. Phylogenetic information was available for 184 of the 310 endemic genera (59.3%) and divergence time estimates were available for 67 (21.6%). Based on this evidence, we show the importance of phylogenetic clustering in the assemblage of the current Madagascan diversity (26% of the genera have a sister lineage from Madagascar) and confirm the strong floristic affinities with Africa, South‐East Asia and India (22%, 9.1% and 6.2% of the genera, respectively). The close links with the Comoros, Mascarenes and Seychelles are also discussed. These results also support an Eocene/Oligocene onset for the origin of the Madagascan generic endemic flora, with the majority arising in the Miocene or more recently. These results therefore de‐emphasize the importance of the Gondwanan break‐up on the evolution of the flora. There is, however, some fossil evidence suggesting that recent extinctions (e.g. Sarcolaenaceae, a current Madagascan endemic, in southern Africa) might blur vicariance patterns and favour dispersal explanations for current biodiversity patterns. © 2013 The Linnean Society of London  相似文献   

13.
: 物种丰富度分布格局及其形成机制的研究对于生物多样性保护具有重要意义。为了解中国两栖动物物种丰富度分布格局,本文利用中国省级尺度两栖动物物种分布数据和环境信息,结合GIS和数理统计方法,探讨两栖动物物种丰富度的地理分布格局与环境因子之间的关系。研究结果表明:(1)物种丰富度随纬度增加呈逐渐递减趋势,但缺乏显著的经度梯度。丰富度最高的地区主要集中在南方,我国北方、西北干旱区和青藏高原北部地区丰富度较低;(2)最优模型由年均温、最冷月均温、净初级生产力、年降水量变化范围、月均降水量标准差组成,多层次方差分解表明,最冷月均温的独立解释能力(17.6%)高于年均温(11.5%);(3)方差分解表明,季节性因子的独立解释能力(5.6%)低于热量因子(6.1%),但高于水分因子(4.5%),因此我们认为季节性因子也是限制中国两栖动物分布的重要因素。  相似文献   

14.
    
Aim In order to resolve disputed biogeographical histories of biota with Gondwanan continental distributions, and to assess the null hypothesis of vicariance, it is imperative that a robust geological time‐frame be established. As an example, the sudden and coincident appearance of hystricognath rodents (Rodentia: Hystricognathi) on both the African and South American continents has been an irreconcilable controversy for evolutionary biologists, presenting enigmas for both Gondwanan vicariance and Late Eocene dispersal hypotheses. In an attempt to resolve this discordance, we aim to provide a more robust phylogenetic hypothesis and improve divergence‐date estimates, which are essential to assessing the null hypothesis of vicariance biogeography. Location The primary centres of distribution are in Africa and South America. Methods We implemented parsimony, maximum‐likelihood and Bayesian methods to generate a phylogeny of 37 hystricognath taxa, the most comprehensive taxonomic sampling of this group to date, on the basis of two nuclear gene regions. To increase phylogenetic resolution at the basal nodes, these data were combined with previously published data for six additional nuclear gene regions. Divergence dates were estimated using two relaxed‐molecular‐clock methods, Bayesian multidivtime and nonparametric rate smoothing. Results Our data do not support reciprocal monophyly of African and South American lineages. Indeed, Old World porcupines (i.e. Hystricomorpha) appear to be more closely related to New World lineages (i.e. Caviomorpha) than to other Old World families (i.e. Bathyergidae, Petromuridae and Thryonomyidae). The divergence between the monophyletic assemblage of South American lineages and its Old World ancestor was estimated to have occurred c. 50 Ma. Main conclusions Our phylogenetic hypothesis and divergence‐date estimates are strongly at odds with Gondwanan‐vicariance isolating mechanisms. In contrast, our data suggest that transoceanic dispersal has played a significant role in governing the contemporary distribution of hystricognath rodents. Molecular‐clock analyses imply a trans‐Tethys dispersal event, broadly confined to the Late Cretaceous, and trans‐Atlantic dispersal within the Early Eocene. Our analyses also imply that the use of the oldest known South American rodent fossil as a calibration point has biased molecular‐clock inferences.  相似文献   

15.
16.
Reconstructing the transmission history of infectious diseases in the absence of medical or epidemiological records often relies on the evolutionary analysis of pathogen genetic sequences. The precision of evolutionary estimates of epidemic history can be increased by the inclusion of sequences derived from ‘archived’ samples that are genetically distinct from contemporary strains. Historical sequences are especially valuable for viral pathogens that circulated for many years before being formally identified, including HIV and the hepatitis C virus (HCV). However, surprisingly few HCV isolates sampled before discovery of the virus in 1989 are currently available. Here, we report and analyse two HCV subgenomic sequences obtained from infected individuals in 1953, which represent the oldest genetic evidence of HCV infection. The pairwise genetic diversity between the two sequences indicates a substantial period of HCV transmission prior to the 1950s, and their inclusion in evolutionary analyses provides new estimates of the common ancestor of HCV in the USA. To explore and validate the evolutionary information provided by these sequences, we used a new phylogenetic molecular clock method to estimate the date of sampling of the archived strains, plus the dates of four more contemporary reference genomes. Despite the short fragments available, we conclude that the archived sequences are consistent with a proposed sampling date of 1953, although statistical uncertainty is large. Our cross-validation analyses suggest that the bias and low statistical power observed here likely arise from a combination of high evolutionary rate heterogeneity and an unstructured, star-like phylogeny. We expect that attempts to date other historical viruses under similar circumstances will meet similar problems.  相似文献   

17.
    
The AustralianDaphnia (D. occidentalis, D. jollyi, D. lumholtzi, D. carinata, D. nivalis, andD. cephalata) include representatives from three distinct groups within the genus. The worldwide distribution of species within these three groups is consistent with a Gondwanan or pre-Gondwanan origin for each group. These data suggest an even more ancient origin for the genusDaphnia. The finding thatD. cephalata must have been separated fromD. carinata since Gondwanan times is consistent with recent biochemical data on the phylogenetic relations of AustralianDaphnia, but contrasts with electrophoretic evidence of continuing hybridization between these two taxa. It is suggested that continued gene exchange between otherwise discrete species, or clonal complexes, ofDaphnia may be maintained for millions of years, partly as a result of the varying degrees of cyclical parthenogenesis, and partly as a result of the highly fragmented population structures, found in these taxa.  相似文献   

18.
The evolutionary relationship among Vibrio fischeri isolates obtained from the light organs of Euprymna scolopes collected around Oahu, Hawaii, were examined in this study. Phylogenetic reconstructions based on a concatenation of fragments of four housekeeping loci (recA, mdh, katA, pyrC) identified one monophyletic group (‘Group-A'') of V. fischeri from Oahu. Group-A V. fischeri strains could also be identified by a single DNA fingerprint type. V. fischeri strains with this fingerprint type had been observed to be at a significantly higher abundance than other strains in the light organs of adult squid collected from Maunalua Bay, Oahu, in 2005. We hypothesized that these previous observations might be related to a growth/survival advantage of the Group-A strains in the Maunalua Bay environments. Competition experiments between Group-A strains and non-Group-A strains demonstrated an advantage of the former in colonizing juvenile Maunalua Bay hosts. Growth and survival assays in Maunalua Bay seawater microcosms revealed a reduced fitness of Group-A strains relative to non-Group-A strains. From these results, we hypothesize that there may exist trade-offs between growth in the light organ and in seawater environments for local V. fischeri strains from Oahu. Alternatively, Group-A V. fischeri may represent an example of rapid, evolutionarily significant, specialization of a horizontally transmitted symbiont to a local host population.  相似文献   

19.
物种丰富度分布格局及其形成机制的研究对于生物多样性保护具有重要意义。为了了解中国蚂蚁物种丰富度分布格局,利用中国省级尺度蚂蚁物种分布数据和环境信息,结合GIS和数理统计方法,探讨蚂蚁物种丰富度的地理分布格局与环境因子之间的关系。研究结果表明:(1)蚂蚁丰富度随纬度增加呈逐渐递减趋势,但缺乏显著的经度梯度。丰富度最高的地区主要集中在南方省份,我国北方、西北干旱区和青藏高原北部地区丰富度较低;(2)简单线性回归分析表明,能量、水分和季节性因素中,影响蚂蚁物种丰富度最强的因子分别为最冷月均温(TEMmin)(R2adj=0.532)、年均降水量(PREC)(R2adj=0.376)和年温度变化范围(TEMvar)(R2adj=0.539),而单个生境异质性因子对蚂蚁物种丰富度的影响均不显著;(3)最优模型由年均温(TEM)、海拔变化范围(ELErange)和年温度变化范围(TEMvar)组成,能够解释68.4%的蚂蚁丰富度地理分异。鉴于海拔变化范围更多地反映与温度相关的生境异质性,因此温度是限制中国蚂蚁分布的最重要因素。另外,分析结果还表明,海南、贵州、江西、四川、安徽和山西等6省蚂蚁区系调查最不充分,是未来发现蚂蚁新分布的热点地区。  相似文献   

20.
    
Identifying the current and past processes driving community assembly is critical in the effort to understand the Earth's biodiversity and its response to future environmental change. But while studies on community assembly often emphasize the role of contemporary ecological drivers, it has been particularly challenging to account for the effects of past processes in shaping present‐day communities. In this issue of Molecular Ecology, Hao et al. (2020) provide a holistic analysis of factors driving the assembly of diverse communities of Lepidoptera in two mountain ranges in northeastern China. The authors use an impressively large data set and exceptionally comprehensive analyses to test how processes of range expansion and gene flow, speciation and extinction, dispersal limitation, environmental filtering and competition have led to present‐day diversity patterns. A key novelty of this work is the exhaustive use of DNA barcodes, relatively simple yet powerful molecular markers, to tackle complex biological questions. The authors elegantly show the utility of DNA barcoding data for research beyond simple taxonomic assignment. Their approach is remarkable as it manages to integrate population genetics, phylogenetic history, species diversity and ecology into a well‐rounded picture of community assembly. With this work, Hao et al. demonstrate the great promise of DNA barcoding for exhaustive community analysis of even highly diverse and complex systems, raising the bar for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号