首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monarch butterflies are best known for their spectacular annual migration from eastern North America to Mexico. Monarchs also occur in the North American states west of the Rocky Mountains, from where they fly shorter distances to the California Coast. Whether eastern and western North American monarchs form one genetic population or are genetically differentiated remains hotly debated, and resolution of this debate is essential to understand monarch migration patterns and to protect this iconic insect species. We studied the genetic structure of North American migratory monarch populations, as well as nonmigratory populations in Hawaii and New Zealand. Our results show that eastern and western migratory monarchs form one admixed population and that monarchs from Hawaii and New Zealand have genetically diverged from North American butterflies. These findings suggest that eastern and western monarch butterflies maintain their divergent migrations despite genetic mixing. The finding that eastern and western monarchs form one genetic population also suggests that the conservation of overwintering sites in Mexico is crucial for the protection of monarchs in both eastern and western North America.  相似文献   

2.
Understanding the natal origins of migratory animals is critical for understanding their population dynamics and conservation. However, quantitative estimates of population recruitment from different natal habitats can be difficult to assess for many species, especially those with large geographic ranges. These limitations hinder the evaluation of alternative hypotheses about the key movements and ecological interactions of migratory species. Here, we quantitatively investigated intra‐population variation in the natal origins of western North American monarch butterflies Danaus plexippus using spatial analyses of stable isotope ratios and correlations with wing morphology. A map of hydrogen isotope values in western monarch butterfly wings (δ2Hm) was estimated using a transfer function that relates the δ2Hm values of monarch butterfly wing keratin to a long‐term dataset of precipitation isotope (δ2Hp) values across the western United States. Isotopic analyses of 114 monarch butterfly wings collected at four California overwintering locations indicated substantial individual variation in natal origins, with most recruitment coming from broad regions along the Pacific coast, the southwestern US and the northern intermountain region. These observed patterns may partially resolve and reconcile several past hypotheses about the natal origins of western monarch butterflies, while also raising new questions. More negative δ2Hm values (associated with longer migratory distance) were significantly correlated with larger forewing sizes, consistent with expectations based on the aerodynamic and energetic costs of long‐distance migration, while analyses of wing shape suggest potential differences in the movement behaviors and constraints observed in the western range, compared with previous observations in eastern North America. Taken together, the results of this study indicate substantial individual variation in the natal origins of overwintering western monarch butterflies, suggesting both local and long‐distance movement to overwintering sites.  相似文献   

3.
Monarch butterflies are known for their spectacular annual migration in eastern North America, with millions of monarchs flying up to 4,500 km to overwintering sites in central Mexico. Monarchs also live west of the Rocky Mountains, where they travel shorter distances to overwinter along the Pacific Coast. It is often assumed that eastern and western monarchs form distinct evolutionary units, but genomic studies to support this notion are lacking. We used a tethered flight mill to show that migratory eastern monarchs have greater flight performance than western monarchs, consistent with their greater migratory distances. However, analysing more than 20 million SNPs in 43 monarch genomes, we found no evidence for genomic differentiation between eastern and western monarchs. Genomic analysis also showed identical and low levels of genetic diversity, and demographic analyses indicated similar effective population sizes and ongoing gene flow between eastern and western monarchs. Gene expression analysis of a subset of candidate genes during active flight revealed differential gene expression related to nonmuscular motor activity. Our results demonstrate that eastern and western monarchs maintain migratory differences despite ongoing gene flow, and suggest that migratory differences between eastern and western monarchs are not driven by select major‐effects alleles. Instead, variation in migratory distance and destination may be driven by environmentally induced differential gene expression or by many alleles of small effect.  相似文献   

4.
The eastern North American population of the monarch butterfly (Danaus plexippus plexippus) has different migratory routes. The majority fly to overwintering colonies in Mexico and others take an eastern route through Florida and Cuba. Monarchs migrating through Florida–Cuba do not overwinter and are mostly found nectaring and flying close to vegetation. This present study explores whether Florida–Cuba versus Mexican migrants differ in (1) phenotypic traits important for migration (e.g. wing size and condition, lipid and lean mass content, and reproductive status) and (2) migratory strategies. The monarch natal grounds (e.g. migrants versus residents) were determined through thin‐layer chromatography cardenolide fingerprint and stable isotopes (hydrogen δ2H and carbon δ13C). In addition, wing size and condition, lipid and lean mass, and reproductive status were determined. The results suggest that Mexican migrants are better suited for longer sustained flights and successful overwinter periods as a result of larger wings in better condition, reproductive diapause, and significant fat content. By contrast, Florida–Cuba migrants are more suited for shorter flights and opportunistic migratory strategies, given that their wings were in poor condition, as well as the active reproductive status of > 50% of these butterflies and their significantly low fat content. Eastern monarch migration is more complex and diverse than previously assumed. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

5.
Each spring, millions of monarch butterflies (Danaus plexippus) migrate from overwintering sites in Mexico to recolonize eastern North America. However, few monarchs are found along the east coast of the USA until mid-summer. Brower (Brower, L. P. 1996 J. Exp. Biol. 199, 93–103.) proposed that east coast recolonization is accomplished by individuals migrating from the west over the Appalachians, but to date no evidence exists to support this hypothesis. We used hydrogen (δD) and carbon (δ13C) stable isotope measurements to estimate natal origins of 90 monarchs sampled from 17 sites along the eastern United States coast. We found the majority of monarchs (88%) originated in the mid-west and Great Lakes regions, providing, to our knowledge, the first direct evidence that second generation monarchs born in June complete a (trans-) longitudinal migration across the Appalachian mountains. The remaining individuals (12%) originated from parents that migrated directly from the Gulf coast during early spring. Our results provide evidence of a west to east longitudinal migration and provide additional rationale for conserving east coast populations by identifying breeding sources.  相似文献   

6.

Background

Elucidating geographic locations from where migratory birds are recruited into adult breeding populations is a fundamental but largely elusive goal in conservation biology. This is especially true for species that breed in remote northern areas where field-based demographic assessments are logistically challenging.

Methodology/Findings

Here we used hydrogen isotopes (δD) to determine natal origins of migrating hatch-year lesser scaup (Aythya affinis) harvested by hunters in the United States from all North American flyways during the hunting seasons of 1999–2000 (n = 412) and 2000–2001 (n = 455). We combined geospatial, observational, and analytical data sources, including known scaup breeding range, δD values of feathers from juveniles at natal sites, models of δD for growing-season precipitation, and scaup band-recovery data to generate probabilistic natal origin landscapes for individual scaup. We then used Monte Carlo integration to model assignment uncertainty from among individual δD variance estimates from birds of known molt origin and also from band-return data summarized at the flyway level. We compared the distribution of scaup natal origin with the distribution of breeding population counts obtained from systematic long-term surveys.

Conclusions/Significance

Our analysis revealed that the proportion of young scaup produced in the northern (above 60°N) versus the southern boreal and Prairie-Parkland region was inversely related to the proportions of breeding adults using these regions, suggesting that despite having a higher relative abundance of breeding adults, the northern boreal region was less productive for scaup recruitment into the harvest than more southern biomes. Our approach for evaluating population declines of migratory birds (particularly game birds) synthesizes all available distributional data and exploits the advantages of intrinsic isotopic markers that link individuals to geography.  相似文献   

7.
Abstract

Sampling methods are described for estimating the population density, mortality, and natality of a univoltine population of codling moth attacking mature apple trees (cv. ‘Delicious’) at Nelson, New Zealand. These methods were used to construct life tables for the species over eight generations (1967–68 to 1974–75) on trees variously sprayed and not sprayed with ryania in an integrated control programme. Bait traps provided a sensitive measure of seasonal adult population density. Analysis of the life tables shows that migration of adults was the main key factor and that overwintering larval mortality (particularly that due to bird predation), fecundity, and ryania also made a major contribution to variation in generation mortality. In the absence of ryania the resident population usually increased between generations, whereas it usually decreased when ryania sprays were applied. The density dependence of overwintering larval mortality was due to bird predation, and the inverse density dependence of larval mortality from ryania was due to changes in the site of fruit entry with larval population density. Fecundity was density independent, and inconclusive evidence was obtained on the density dependence of migration. The wide variation in fecundity is attributed primarily to weather conditions. The impact on control strategy of the above key factors, density dependence, and total natural mortality is discussed. Ryania is found to be uneconomic, whereas the granulosis virus of codling moth and male removal with pheromone traps show promise as future control methods. The need to eliminate reservoirs of codling moth close to orchards under integrated pest control is emphasised. Regulation of codling moth populations at Nelson on neglected, unsprayed trees appears to result from intraspecific competition for fruits and cocooning sites, and weakly density-dependent mortality of mature larvae when seeking cocooning sites and while overwintering in their cocoons. Variation in fecundity also cohtributes to fluctuations in abundance of the species. In contrast, at low density in an integrated control programme no intraspecific competition was evident; migration, winter mortality, and fecundity were the main determinants of abundance. This illustrates the need to study pest populations at densities similar to those tolerable commercially.  相似文献   

8.
The breeding grounds of migrant generation monarch butterflies in eastern North America are well known. In stark contrast the location of natal grounds of western migrants has not been delineated. We show that 55% of the area within seven western states was potential breeding range based on: (1) the occurrence of milkweed host plant species with phenology making them available during late-summer and (2) regional thermal conditions supportive of adult reproductive activity and development of immature stages. We next used a series of spatially explicit “bottom-up” regression models to test this first-approximation natal origins distribution. We tested for associations between variation in moisture availability at putative natal habitat and inter-annual variation in monarch abundance at western wintering sites for a 10 year period (1998–2007). Variation in moisture availability, as measured by Palmer’s drought severity index (PDSI), across the western region predicted monarch abundance patterns. In contrast and as expected, PDSI across known eastern breeding grounds did not predict variation in western monarch migrant abundance. The pattern of moisture availability was not uniform between states or within states and permitted similar tests of association at a finer geographical level. PDSI for California, Idaho, Nevada, and Oregon (but not Arizona, Utah, or Washington) were each significantly associated with monarch wintering abundance patterns with California exhibiting the strongest relationship. At a more focused spatial scale we tested the local recruitment hypothesis. This is the notion that western coastal wintering monarch populations derive only from nearby coastal breeding habitat and that monarchs do not migrate from more distant natal grounds. Variation in moisture availability within a block of three contiguous central California climate divisions (Sacramento Drainage, San Joaquin Drainage, and Southeast Desert Basin) significantly predicted inter-annual abundance of migrant generation monarchs. In contrast PDSI patterns of three coastal California climate divisions, i.e., ones local to wintering sites, as well as that of climate divisions in western Nevada and Arizona did not predict variation in monarch abundance at this more focused spatial resolution. Our findings suggest that moisture regimes act as a strong bottom-up driver of monarch abundance pattern via resource availability in western USA.  相似文献   

9.
Monarch butterflies (Danaus plexippus) are parasitized by the protozoan Ophryocystis elektroscirrha throughout their geographical range. Monarchs inhabiting seasonally fluctuating environments migrate annually, and parasite prevalence is lower among migratory relative to non‐migratory populations. One explanation for this pattern is that long‐distance migration weeds out infected animals, thus reducing parasite prevalence and transmission between generations. In this study we experimentally infected monarchs from a migratory population and recorded their long‐distance flight performance using a tethered flight mill. Results showed that parasitized butterflies exhibited shorter flight distances, slower flight speeds, and lost proportionately more body mass per km flown. Differences between parasitized and unparasitized monarchs were generally not explained by individual variation in wing size, shape, or wing loading, suggesting that poorer flight performance among parasitized hosts was not directly caused by morphological constraints. Effects of parasite infection on powered flight support a role for long‐distance migration in dramatically reducing parasite prevalence in this and other host–pathogen systems.  相似文献   

10.
Addressing population declines of migratory insects requires linking populations across different portions of the annual cycle and understanding the effects of variation in weather and climate on productivity, recruitment, and patterns of long‐distance movement. We used stable H and C isotopes and geospatial modeling to estimate the natal origin of monarch butterflies (Danaus plexippus) in eastern North America using over 1000 monarchs collected over almost four decades at Mexican overwintering colonies. Multinomial regression was used to ascertain which climate‐related factors best‐predicted temporal variation in natal origin across six breeding regions. The region producing the largest proportion of overwintering monarchs was the US Midwest (mean annual proportion = 0.38; 95% CI: 0.36–0.41) followed by the north‐central (0.17; 0.14–0.18), northeast (0.15; 0.11–0.16), northwest (0.12; 0.12–0.16), southwest (0.11; 0.08–0.12), and southeast (0.08; 0.07–0.11) regions. There was no evidence of directional shifts in the relative contributions of different natal regions over time, which suggests these regions are comprising the same relative proportion of the overwintering population in recent years as in the mid‐1970s. Instead, interannual variation in the proportion of monarchs from each region covaried with climate, as measured by the Southern Oscillation Index and regional‐specific daily maximum temperature and precipitation, which together likely dictate larval development rates and food plant condition. Our results provide the first robust long‐term analysis of predictors of the natal origins of monarchs overwintering in Mexico. Conservation efforts on the breeding grounds focused on the Midwest region will likely have the greatest benefit to eastern North American migratory monarchs, but the population will likely remain sensitive to regional and stochastic weather patterns.  相似文献   

11.
1. Monarch butterflies Danaus plexippus (L.) (Lepidoptera: Nymphalidae) are susceptible to infection by the obligate protozoan parasite Ophryocystis elektroscirrha (McLaughlin and Myers) (Apicomplexa: Neogregarinida). Because monarchs form resident and migratory populations in different parts of the world, this host–parasite system provides the opportunity to examine how variation in parasite prevalence relates to host movement patterns. 2. Parasite prevalence was evaluated using 14 790 adult monarchs captured between 1968 and 1997. Comparison of three populations in North America indicated that parasite prevalence is associated negatively with host dispersal distances. A continuously breeding, nonmigratory population in southern Florida showed high prevalence (over 70% heavily infected). The western population migrates moderate distances to overwintering sites on the Pacific Coast and has intermediate prevalence (30% heavily infected). The eastern migratory population, which travels the longest distance to Mexican overwintering sites, has exhibited less than 8% infection throughout the past 30 years. 3. Variation in parasite loads within North American migratory populations was investigated to determine whether the prevalence of heavy infection and average parasite loads declined during migration or overwintering. Average parasite loads of summer‐breeding adults in western North America decreased with increasing distance from overwintering sites. This suggests that heavily infected monarchs are less likely to remigrate long distances in spring. No differences in the frequency of heavily infected adults were found among eastern or western North American monarchs throughout the overwintering period, however, suggesting that this parasite does not affect overwintering mortality. 4. Changes in the prevalence of monarchs with low parasite loads demonstrate that spore transfer occurs during migration and overwintering, possibly when adult butterflies contact each other as a result of their clustering behaviour. 5. This study of geographical and temporal variation in O. elektroscirrha among populations of D. plexippus demonstrates the potential role of seasonal migration in mediating interactions between hosts and parasites, and suggests several mechanisms through which migratory behaviour may influence parasite prevalence.  相似文献   

12.
The freshwater phase of the first seaward migration of juvenile Atlantic salmon (Salmo salar) is relatively well understood when compared with our understanding of the marine phase of their migration. In 2021, 1008 wild and 60 ranched Atlantic salmon smolts were tagged with acoustic transmitters in 12 rivers in England, Scotland, Northern Ireland and Ireland. Large marine receiver arrays were deployed in the Irish Sea at two locations: at the transition of the Irish Sea into the North Atlantic between Ireland and Scotland, and between southern Scotland and Northern Ireland, to examine the early phase of the marine migration of Atlantic salmon smolts. After leaving their natal rivers' post-smolt migration through the Irish Sea was rapid with minimum speeds ranging from 14.03 to 38.56 km.day−1 for Atlantic salmon smolts that entered the Irish Sea directly from their natal river, to 9.69–39.94 km.day−1 for Atlantic salmon smolts that entered the Irish Sea directly from their natal estuary. Population minimum migration success through the study area was strongly correlated with the distance of travel, populations further away from the point of entry to the open North Atlantic exhibited lower migration success. Post-smolts from different populations experienced different water temperatures on entering the North Atlantic. This was largely driven by the timing of their migration and may have significant consequences for feeding and ultimately survivorship. The influence of water currents on post-smolt movement was investigated using data from previously constructed numerical hydrodynamic models. Modeled water current data in the northern Irish Sea showed that post-smolts had a strong preference for migrating when the current direction was at around 283° (west-north-west) but did not migrate when exposed to strong currents in other directions. This is the most favorable direction for onward passage from the Irish Sea to the continental shelf edge current, a known accumulation point for migrating post-smolts. These results strongly indicate that post-smolts migrating through the coastal marine environment are: (1) not simply migrating by current following (2) engage in active directional swimming (3) have an intrinsic sense of their migration direction and (4) can use cues other than water current direction to orientate during this part of their migration.  相似文献   

13.
Monarch butterflies [Danaus plexippus) of the eastern North American population migrate each fall from die northern U.S.A. and southern Canada to overwintering sites in Mexico and return the following spring to the southeastern U.S.A. where they lay eggs and then die. The spring remigration is the least studied phase in the annual migration cycle. We therefore conducted a mark-recapture study and examined population recolonization dynamics and residence time in a north-central Florida pasture where the monarch's milkweed host plant (Asclepias humistrata) was abundant. Beginning in late March 1995 two waves of monarchs arrived, their numbers peaked at 71 individuals by mid-April, and the butterflies disappeared in early May. After arriving, the adults remained for 3–5 days, laid eggs and then continued to migrate. We also compared population sizes and arrival times in 1994 and 1996. We found no evidence of a second spring generation, which was also consistent with the deteriorating quality of the A. humistrata plants. Individuals of the new spring generation disappear shordy after eclosion. The arriving population was approximately nine times greater in 1995 than in 1996. Our findings support two recent hypodieses: (1) the bird-like migration of the monarch butterfly in North America evolved with the northward expansion and phenology of milkweeds; and (2) monarchs appear to be migratory throughout their annual cycle of several generations. By lingering for only a short time at each milkweed patch they encounter, the old monarchs returning from Mexico locate the resurgent milkweed flora over an extensive area in the southern states. Then, within less than a month, their fresh offspring continue the migration and exploit the unfolding cornucopia of milkweeds as the spring advances northward. The more we discover about the biology of this insect, the more remarkable is its annual migratory, breeding and overwintering cycle.  相似文献   

14.
Both post-eclosion and post-feeding diuresis can be demonstrated in adult Monarch butterflies; and both these processes are significantly inhibited by neck-ligature. The post-eclosion response is restored in neck-ligatured animals by injection of whole head, brain, ventral nerve cord, and corpora cardiaca-corpora allata extracts, and the effect is dose dependent. The active substance appears to be a water soluble, heat stable, trypsin and protease sensitive, polypeptide, with a molecular weight estimated from gel filtration of approx. 3000, that is localized principally in the brain. The amount of active substance present in the head decreases during post-eclosion diuresis, when activity seems to be present in the haemolymph. However, diuretic activity can be demonstrated from heads obtained from Monarchs that are several days or weeks old. In the Monarch, post-eclosion diuresis appears to be under hormonal regulation. By contrast, extracts of whole heads and/or known endocrine organs do not significantly alter post-feeding diuresis in intact or neck-ligatured Monarchs. In addition, although diuresis in response to injections of large volumes of insect saline can be demonstrated in Monarchs, extracts of known endocrine organs do not affect the rate of post-injection diuresis in either neck-ligatured or intact animals. Such experiments, and others involving surgical interruption of the ventral nerve cord, indicate that the eclosion diuretic hormone does not play a major role in the regulation of post-feeding diuresis in this species.  相似文献   

15.
Nest Hydrocarbons as Cues for Philopatry in a Paper Wasp   总被引:3,自引:0,他引:3  
Philopatric behavior has been demonstrated in a wide taxonomic spread of animals. In temperate environments, overwintered Polistes wasp foundresses often return to their natal nest prior to initiating colony construction. Previous research has shown that these spring foundresses can identify the natal nest in the absence of landmark and gross morphological cues. Hydrocarbons are essential recognition cues for Polistes nest and nestmate discrimination, but cuticular hydrocarbon profiles can become homogenized when foundresses overwinter in mixed colony groups. We examined the hydrocarbon profiles of Polistes dominulus foundresses and nests before and after an overwintering period, and found that the hydrocarbon profiles of nests remain unique over time and that this uniqueness is influenced by the original foundresses. Our data raise the possibility that in returning to the natal nest, foundresses reacquire their colony‐specific signature, which may play a role in the formation of cooperative associations.  相似文献   

16.
Wing membranes of laboratory and field-reared monarch butterflies (Danaus plexippus) were analyzed for their stable-hydrogen (δD) and carbon (δ13C) isotope ratios to determine whether this technique could be used to identify their natal origins. We hypothesized that the hydrogen isotopic composition of monarch butterfly wing keratin would reflect the hydrogen isotope patterns of rainfall in areas of natal origin where wings were formed. Monarchs were reared in the laboratory on milkweed plants (Asclepias sp.) grown with water of known deuterium content, and, with the assistance of volunteers, on native milkweeds throughout eastern North America. The results show that the stable hydrogen isotopic composition of monarch butterflies is highly correlated with the isotopic composition of the milkweed host plants, which in turn corresponds closely with the long-term geographic patterns of deuterium in rainfall. Stable-carbon isotope values in milkweed host plants were similarly correlated with those values in monarch butterflies and showed a general pattern of enrichment along a southwest to northeast gradient bisecting the Great Lakes. These findings indicate that natal origins of migratory and wintering monarchs in Mexico can be inferred from the combined δD and δ13C isotopic signatures in their wings. This relationship establishes that analysis of hydrogen and carbon isotopes can be used to answer questions concerning the biology of migratory monarch butterflies and provides a new approach to tracking similar migratory movements of other organisms. Received: 1 July 1998 / Accepted: 11 November 1998  相似文献   

17.
The migration of monarch butterflies (Danaus plexippus) from Canada and the United States to overwintering sites in Mexico is one of the world’s most amazing biological phenomena, although recent threats make it imperative that the resources needed by migrating monarchs be conserved. The most important first step in preserving migration resources—determining the migration flyways—is also the most challenging because of the large-scale nature of the migration. Prior attempts to determine the flyways using mark-recapture techniques with wing tags gave some clues, but this important information has never been fully obtainable until now. In 2005 the citizen-science program, Journey North, initiated a project that asked participants to record sightings of overnight roosts of monarchs during their fall migration, and this project now provides an ideal way to illustrate the flyways used by monarchs on their way to Mexico, with the assumption that roost locations indicate migration routes. We used 3 years of this data to elucidate the flyways on a continent-wide scale, that revealed two distinct flyways, but only one appears to lead directly to Mexico. This main, ‘central’ flyway begins in the American Midwest states and southern Ontario, then continues south-southwest through the states of Kansas, Missouri, Oklahoma and Arkansas, and finally passes through Texas and northern Mexico. These data also highlighted a separate, smaller flyway along the eastern and coastal states, but there was a noticeable lack of roost sightings in this flyway at lower latitudes. Since there are few recoveries of marked monarchs in Mexico originating from coastal areas, we compared the timing of roost formation in this ‘eastern’ flyway with the main, central flyway. Roosts in the eastern flyway lagged behind the central roosts in timing, suggesting that monarchs traveling in this flyway have a reduced chance of making it to the Mexico wintering site. Combined, our evidence indicates that locations in the central flyway should be considered priority areas for conserving migration resources.  相似文献   

18.
Migratory birds make decisions about how far to travel based on cost-benefit trade-offs. However, in many cases the net effect of these trade-offs is unclear. We sought to address this question by measuring feather corticosterone (CORTf), leucocyte profile, avian malaria parasite prevalence and estimating fueling rates in three spatially segregated wintering populations of the migratory shorebird ruddy turnstone Arenaria interpres during their stay in the winter habitat. These birds fly from the high-Arctic breeding ground to Australia, but differ in that some decide to end their migration early (Broome, Western Australia), whereas others travel further to either South Australia or Tasmania. We hypothesized that the extra costs in birds migrating greater distances and overwintering in colder climates would be offset by benefits when reaching their destination. This would be evidenced by lower stress biomarkers in populations that travel further, owing to the expected benefits of greater resources and improved vitality. We show that avian malaria prevalence and physiological stress levels were lower in birds flying to South Australia and Tasmania than those overwintering in Broome. Furthermore, our modeling predicts that birds in the southernmost locations enjoy higher fueling rates. Our data are consistent with the interpretation that birds occupying more costly wintering locations in terms of higher migratory flight and thermoregulatory costs are compensated by better feeding conditions and lower blood parasite infections, which facilitates timely and speedy migration back to the breeding ground. These data contribute to our understanding of cost-benefit trade-offs in the decision making underlying migratory behaviour.  相似文献   

19.
Threats to several of the world's great animal migrations necessitate a research agenda focused on identifying drivers of their population dynamics. The monarch butterfly is an iconic species whose continental migratory population in eastern North America has been declining precipitously. Recent analyses have linked the monarch decline to reduced abundance of milkweed host plants in the USA caused by increased use of genetically modified herbicide‐resistant crops. To identify the most sensitive stages in the monarch's annual multi‐generational migration, and to test the milkweed limitation hypothesis, we analyzed 22 years of citizen science records from four monitoring programs across North America. We analyzed the relationships between butterfly population indices at successive stages of the annual migratory cycle to assess demographic connections and to address the roles of migrant population size versus temporal trends that reflect changes in habitat or resource quality. We find a sharp annual population decline in the first breeding generation in the southern USA, driven by the progressively smaller numbers of spring migrants from the overwintering grounds in Mexico. Monarch populations then build regionally during the summer generations. Contrary to the milkweed limitation hypothesis, we did not find statistically significant temporal trends in stage‐to‐stage population relationships in the mid‐western or northeastern USA. In contrast, there are statistically significant negative temporal trends at the overwintering grounds in Mexico, suggesting that monarch success during the fall migration and re‐establishment strongly contributes to the butterfly decline. Lack of milkweed, the only host plant for monarch butterfly caterpillars, is unlikely to be driving the monarch's population decline. Conservation efforts therefore require additional focus on the later phases in the monarch's annual migratory cycle. We hypothesize that lack of nectar sources, habitat fragmentation, continued degradation at the overwintering sites, or other threats to successful fall migration are critical limiting factors for declining monarchs.  相似文献   

20.
Previous research on Monarch butterflies has shown that juvenile hormone (JH) stimulates the development of the ovary and certain reproductive glands of both sexes. Ecdysterone injections into intact Monarchs demonstrate that low doses of this hormone inhibit ovarian development, and higher doses stimulate the male and female reproductive glands. In addition, experiments using neckligatured adults show that ecdysterone stimulates the reproductive glands of both sexes, in the apparent absence of JH, with the most pronounced effect being observed on the female colleterial gland. Other studies with neck-ligatured animals demonstrate that ecdysterone also synergizes with JH on the female gland and all three male glands. The feasibility of using Monarch reproductive glands for studies on the mode of action and interaction of JH and ecdysterone, and the possibility of a rôle of ecdysterone in the normal regulation of Monarch oögenesis, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号