首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of bimodal oxygen uptake have been made in a freshwater air-breathing fish,Notopterus chitala at 29.0±1(S.D.)°C. xhe mean oxygen uptake from continuously flowing water without any access to air, was found to be 3.58±0.37 (S.E.) ml O2 · h?1 and 56.84+4.29 (S.E.) ml O2 · kg?1 · h?1 for a fish weighing 66.92 + 11.27 (S.E.) g body weight. In still water with access to air, the mean oxygen uptake through the gills were recorded to be 2.49 ± 0.31 (S.E.) ml O2 · h?1 and 38.78 ± 1.92 (S.E.) ml O2 · kg?1 · h?1 and through the accessory respiratory organs (swim-bladder) 6.04±0.87 (S.E.) ml O2 · h?1 and 92.32±2.91 (S.E.) ml O2 · kg?1 · h?1 for a fish averaging 66.92±11.27 (S.E.) g. Out of the total oxygen uptake (131.10 ml O2 · kg?1 · h?1), about 70% was obtained through the aerial route and the remainder 30% through the gills.  相似文献   

2.
The speckled peacock bass Cichla temensis is a popular sport and food fish that generates substantial angling tourism and utilitarian harvest within its range. Its popularity and value make this species important for management and a potential aquaculture candidate for both fisheries enhancement and food fish production. However, little is known of optimal physiochemical conditions in natural habitats, which also are important for the development of hatchery protocols for handling, spawning and grow-out. Speckled peacock bass have been documented to have high sensitivity to extreme temperatures, but the metabolic underpinnings have not been evaluated. In this study, the effects of temperature (25, 30 and 35°C) on the standard metabolic rate (SMR) and lower dissolved oxygen tolerance (LDOT) of juvenile speckled peacock bass (mean ± standard error total length 153 ± 2 mm and wet weight 39.09 ± 1.37 g) were evaluated using intermittent respirometers after an acclimation period of 2 weeks. Speckled peacock bass had the highest SMR at 35°C (345.56 ± 19.89 mgO2 kg−1 h−1), followed by 30°C (208.16 ± 12.45 mgO2 kg−1 h−1) and 25°C (144.09 ± 10.43 mgO2 kg−1 h−1). Correspondingly, the Q10, or rate of increase in aerobic metabolic rate (MO2) relative to 10°C, for 30–35°C was also greater (2.76) than from 25 to 30°C (2.08). Similarly, speckled peacock bass were the most sensitive to hypoxia at the warmest temperature, with an LDOT at pO2 of 90 mmHg (4.13 mg l−1) at 35°C compared to pO2 values of 45 mmHg (2.22 mg l−1) and 30 mmHg (1.61 mg l−1) at 30 and 25°C, respectively. These results indicate that speckled peacock bass are sensitive to temperatures near 35°C, therefore we recommend managing and rearing this species at 25–30°C.  相似文献   

3.
It is colloquially stated that body size plays a role in the human response to cold, but the magnitude and details of this interaction are unclear. To explore the inherent influence of body size on cold-exposed metabolism, we investigated the relation between body composition and resting metabolic rate in humans at thermoneutrality and during cooling within the nonshivering thermogenesis range. Body composition and resting energy expenditure were measured in 20 lean and 20 overweight men at thermoneutrality and during individualized cold exposure. Metabolic rates as a function of ambient temperature were investigated considering the variability in body mass and composition. We observed an inverse relationship between body size and the lower critical temperature (LCT), i.e. the threshold where thermoneutrality ends and cold activates thermogenesis. LCT was higher in lean than overweight subjects (22.1 ± 0.6 vs 19.5 ± 0.5 °C, p < 0.001). Below LCT, minimum conductance was identical between lean and overweight (100 ± 4 vs 97 ± 3 kcal/°C/day respectively, p = 0.45). Overweight individuals had higher basal metabolic rate (BMR) explained mostly by the higher lean mass, and lower cold-induced thermogenesis (CIT) per degree of cold exposure. Below thermoneutrality, energy expenditure did not scale to lean body mass. Overweight subjects had lower heat loss per body surface area (44.7 ± 1.3 vs 54.7 ± 2.3 kcal/°C/m2/day, p < 0.001). We conclude that larger body sizes possessed reduced LCT as explained by higher BMR related to more lean mass rather than a change in whole-body conductance. Thus, larger individuals with higher lean mass need to be exposed to colder temperatures to activate CIT, not because of increased insulation, but because of a higher basal heat generation. Our study suggests that the distinct effects of body size and composition on energy expenditure should be taken in account when exploring the metabolism of humans exposed to cold.  相似文献   

4.
Objective: The objectives of this study were to compare the effects of diets rich in medium‐chain triglycerides (MCTs) or long‐chain triglycerides (LCTs) on body composition, energy expenditure, substrate oxidation, subjective appetite, and ad libitum energy intake in overweight men. Research Methods and Procedures: Twenty‐four healthy, overweight men with body mass indexes between 25 and 31 kg/m2 consumed diets rich in MCT or LCT for 28 days each in a crossover randomized controlled trial. At baseline and after 4 weeks of each dietary intervention, energy expenditure was measured using indirect calorimetry, and body composition was analyzed using magnetic resonance imaging. Results: Upper body adipose tissue (AT) decreased to a greater extent (p < 0.05) with functional oil (FctO) compared with olive oil (OL) consumption (?0.67 ± 0.26 kg and ?0.02 ± 0.19 kg, respectively). There was a trend toward greater loss of whole‐body subcutaneous AT volume (p = 0.087) with FctO compared with OL consumption. Average energy expenditure was 0.04 ± 0.02 kcal/min greater (p < 0.05) on day 2 and 0.03 ± 0.02 kcal/min (not significant) on day 28 with FctO compared with OL consumption. Similarly, average fat oxidation was greater (p = 0.052) with FctO compared with OL intake on day 2 but not day 28. Discussion: Consumption of a diet rich in MCTs results in greater loss of AT compared with LCTs, perhaps due to increased energy expenditure and fat oxidation observed with MCT intake. Thus, MCTs may be considered as agents that aid in the prevention of obesity or potentially stimulate weight loss.  相似文献   

5.
Abstract. Changes in the discontinuous gas exchange cycle of pupal beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), exposed or not to Cry1C Bacillus thuringiensis toxin, are examined against developmental age (1–7 days) and at different temperatures (10–25 °C) using flow through respirometry. Both exposed and nonexposed pupae exhibit discontinuous gas exchange, but only at 10 °C; the frequency of cyclic release of CO2 increases with increasing temperatures. The three phases of the discontinuous gas exchange cycle are distinct for both treatment groups. However, the duration of each phase is significantly greater for pupae exposed previously to toxin. The closed phase is 40 ± 14% longer, the flutter phase 23 ± 19% longer, and the open phase is 28 ± 12% longer when pupae were exposed to toxin. Respiratory water loss is 4.5 ± 1.3% for toxin exposed pupae and 2.1 ± 2.4% for unexposed pupae. Furthermore, the exposed pupae have significantly greater cuticular permeability (26.01 ± 1.9 µg cm−2 h−1 mmHg−1) than the nonexposed pupae (9.64 ± 0.9 µg cm−2 h−1 mmHg−1). However, in both strains, cuticular transpiration (>93%) far exceeds respiratory transpiration. Overall, total water loss is significantly greater in pupae whose larvae are exposed to toxin compared with pupae from nontreated larvae. Toxin exposed pupae have a mean cycle duration of 60 ± 2.5 min whereas that of nonexposed pupae is 42 ± 1.8 min.(ml g−1 h−1) of the open phase is greater earlier in pupal life followed by a minimum at mid-pupal stage and an increase at late-pupal development in both treatment groups. Combining all 7 days, closed, flutter and open phase (ml g−1 h−1), pupae exposed to toxin produce significantly more CO2 during each phase. On average, toxin exposed pupae produce 52 ± 12, 43 ± 10 and 15 ± 37% more CO2 than the untreated pupae during the closed, flutter and open phases, respectively. Therefore, the present study reinforces the need to use insects of similar developmental age in studies of insect respiration patterns and energy metabolism.  相似文献   

6.
Exercise is recommended by public health agencies for weight management; however, the role of exercise is generally considered secondary to energy restriction. Few studies exist that have verified completion of exercise, measured the energy expenditure of exercise, and prescribed exercise with equivalent energy expenditure across individuals and genders.

Objective:

The objective of this study was to evaluate aerobic exercise, without energy restriction, on weight loss in sedentary overweight and obese men and women.

Design and Methods:

This investigation was a randomized, controlled, efficacy trial in 141 overweight and obese participants (body mass index, 31.0 ± 4.6 kg/m2; age 22.6 ± 3.9 years). Participants were randomized (2:2:1 ratio) to exercise at either 400 kcal/session or 600 kcal/session or to a nonexercise control. Exercise was supervised, 5 days/week, for 10 months. All participants were instructed to maintain usual ad libitum diets. Because of the efficacy design, completion of ≥90% of exercise sessions was an a priori definition of per protocol, and these participants were included in the analysis.

Results:

Weight loss from baseline to 10 months for the 400 and 600 kcal/session groups was 3.9 ± 4.9 kg (4.3%) and 5.2 ± 5.6 kg (5.7%), respectively, compared with weight gain for controls of 0.5 ± 3.5 kg (0.5%) (P < 0.05). Differences for weight loss from baseline to 10 months between the exercise groups and differences between men and women within groups were not statistically significant.

Conclusions:

Supervised exercise, with equivalent energy expenditure, results in clinically significant weight loss with no significant difference between men and women.  相似文献   

7.

Background:

Obesity experts have criticized The Biggest Loser television show for its portrayal of an unrealistic intervention that raises false expectations for weight loss. However, the magnitude of the diet and exercise intervention has not been previously quantified.

Design and Methods:

Using a validated computational model of metabolism, I quantified the diet and exercise intervention by integrating data on energy expenditure, body weight and fat mass collected during The Biggest Loser competition.

Results:

Participant body mass index, weight, and percent body fat at baseline were 48.7 ± 10.1 kg/m2, 144.9 ± 39.4 kg, and 49 ± 6% (mean ± SD), respectively. During the first phase of the competition when the contestants were isolated in a boot camp environment, the average rate of weight loss was 0.4 ± 0.1 kg/d and decreased to 0.19 ± 0.1 kg/d after returning home. Total weight loss was 58.2 ± 26 kg with 81.6 ± 8.4% coming from body fat. The computer simulations closely matched these data and calculated that average energy intake decreased by 65% during the first phase to 1300 kcal/d while participating in 3.1 h/d of vigorous exercise. After returning home, energy intake increased to 1900 kcal/d and vigorous exercise decreased to 1.1 h/d. Simulation of diet alone resulted in 34 kg of weight loss with 65% coming from body fat, whereas exercise alone resulted in a loss of 27 kg with 102% from fat.

Conclusion:

The intense diet and exercise intervention during The Biggest Loser competition were not sustainable. However, a relatively modest permanent lifestyle intervention of 20% caloric restriction and 20 min/d of vigorous exercise could maintain the massive weight loss.  相似文献   

8.
It is generally accepted that hypertension and other vascular pathologies increase in diabetes mellitus (DM) patients as a result of the renin–angiotensin–aldosterone (RAA) system. In this study, changes in the renin‐angiotensin‐aldosterone (RAA) system level was determined in Streptozotocin (STZ)‐injected rats. A total of 46 female Wistar albino rats (180–220 g body weight) was utilized in these experiments. STZ was given intraperitoneally to induce diabetes in rats. Streptozotocin (60 mg kg−1 body weight) was dissolved in 0·1 m citrate–‐phosphate buffer (pH 4–5). The non‐diabetic rats were injected with sterilized buffer alone to act as a control group. Blood glucose levels were 398±8·2 mg dl−1, 488±11·75 mg dl−1 and 658±29·6 mg dl−1 at days 3, 12 and 30 respectively. The level of plasma renin activity (PRA) was measured as 7·69±1·07 ng ml−1 h−1; 1·82±0·22 ng ml−1 h−1 and 0·67±0·12 ng ml−1 h−1 at days 3, 12 and 30, respectively. These values showed that the PRA levels are decreased with increased time period. Serum angiotensin converting enzyme (ACE, E.C. 3.4.15.1) levels were increased at days 12 and 30 (p<0·05 and p<0·005), whereas serum aldosterone levels were increased at days 3 and 12 (p<0·05). The level of urea and creatinine increased at days 12 and 30 (p<0·05 and p<0·005, respectively) when compared to the control group. The data from these experiments indicate that the PRA level decreased whereas ACE activity level increased in diabetic rats compared with the control. Aldosterone levels increased at the first stage of the experiment, but then decreased by the end of the experiment as a result of changes in renin and ACE levels. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Telemetered heart rate (fH) was examined as an indicator of activity and oxygen consumption rate (VO2) in adult, cultivated, Atlantic salmon, Salmo salar L. Heart rate was measured during sustained swimming in a flume for six fish at 10° C [mean weight, 1114 g; mean fork length (f. l.), 50·6 cm] and seven fish at 15° C (mean weight, 1119 g; mean f. l., 50·7 cm) at speeds of up to 2·2 body lengths/s. Semi–logarithmic relationships between heart rate and swimming speed were obtained at both temperatures. Spontaneously swimming fish in still water exhibited characteristic heart rate increases associated with activity. Heart rate and Vo2 were monitored simultaneously in a 575–1 circular respirometer for six fish (three male, three female) at 4° C (mean weight, 1804 g; mean F. L., 62· cm) and six fish (three male, three female) at 10° C (mean weight, 2045 g; mean f. l., 63·2 cm) during spontaneous but unquantified activity. Linear regressions were obtained by transforming data for both fH and Vo2 to log values. At each temperature, slopes of the regressions between fH and Vo2 for individual fishes were not significantly different, but in some cases elevations were. All differences in elevation were between male and female fish. There were no significant differences in regression slope or elevation for fish of the same sex at the two temperatures and so regressions were calculated for the sexes, pooling data from 4 and 10° C. There was no significant difference in the mean ± S. D. Vo2 between the sexes at 4° C (male, 66·0 ± 59·6 mgO2 kg?1 h?1; female, 88·0 ± 60·1 mgO2 kg?1 h?1) or 10° C (male, 166·2 ± 115·4 mgO2 kg?1 h?1; female, 169·2 ± 111–1 mgO2 kg?1h?1). Resting Vo2 (x?± s. d.) at 4°C was 36·7 ± 8.4 mgO2 kg?1 h?1, and 10° C was 72·8 ± 11·9 mgO2 kg?1 h?1. Maximum Vo2 (x?± S. D.) at 4° C was 250·6 ± 40·2 mgO2 kg?1 h?1, and at 10° C was 423·6 ± 25·2 mgO2 kg?1 h?1. Heart rate appears to be a useful indicator of metabolic rate over the temperature range examined, for the cultivated fish studied, but it is possible that the relationship for wild fish may differ.  相似文献   

10.
This study deals with the pattern of body weight gain during an overfeeding period with a constant energy intake, in order to assess whether total daily energy expenditure (TEE) increased with body weight and thus could account for the progressive slow down in body weight gain over time. Twenty-four young adult males (12 pairs of identical twins) were overfed by 4.2 MJ per day, six days a week, for a total of 84 days during a 100-day overfeeding period. The total excess amount each man consumed was 353 MJ. It was assumed that, at a given time, the TEE increase (E) was dependent on body weight gain and energy cost (C) was proportional to the daily body weight gain. Results show an exponential increase in body weight, fat free mass, and fat mass (with half-times of 86, 57, and 84 days, respectively) that allows the calculation of E (246 ± 37 kJ*kg?1 d?1, mean ± SE) and C (32.3 ± 2.4 MJ kg?1). Energy expenditure from other sources besides resting metabolic rate, such as physical activity and thermic effect of food, may represent as much as 65% of E. At the beginning of the overfeeding period, almost all the energy surplus was recovered as body substances but this proportion decreased to 60% after 100 days of overfeeding. It is concluded that 1) TEE changes were related to body weight change, 2) about 65% of E were accounted for by physical activity, thermic effect of food, or some other components, and 3) the fraction of the energy surplus stored as body substances decreased with the duration of overfeeding.  相似文献   

11.
《Life sciences》1993,52(8):PL55-PL60
Alfentanil-midazolam analgesic interactions were studied in rats with continuous infusions or bolus injections of the drugs. Analgesia was determined by measuring the threshold of motor response to noxious pressure. The continous constant-rate infusion of alfentanil demonstrated that after an initial peak, the analgesia profoundly declined due to the development of acute tolerance. When alfentanil (250 μg·kg−1·h−1) was given together with midazolam (3 mg·kg−1·h−1), the decline in the analgesic effect of alfentanil was attenuated. Following the 4 h period of the constant-rate (250 μg·kg−1·h−1) infusion of alfentanil, when acute tolerance was already developed, midazolam (3 mg·kg−1) given as a bolus injection enhanced the alfentanil-induced anesthesia. At the same time, when alfentanil was given as a bolus injection (30 μg·kg−1) with or without midazolam (3 mg·kg−1) also by bolus injection, no changes were seen to indicate an enhancement of the analgesic effect of alfentanil by midazolam. The results suggest that midazolam attenuates the development of acute tolerance to the analgesic effect of alfentanil.  相似文献   

12.
A calorimetric experiment of 4 × 4 Latin square design was undertaken to study the effect of sugar-beet pulp (SBP), maize starch, sucrose and xylose on energy metabolism in sheep. The four diets comprised a diet (A) of dried grass, soya-bean meal and SBP (450, 50 and 500 g kg−1 on dry matter (DM) basis) and corresponding diets in which 400 g kg−1 of SBP was replaced by maize starch (B), sucrose (C) or xylose (D); all diets were offered at a level of 600 g DM day−1. After the Latin square was completed, energy value of the basal diet of dried grass and soya-bean meal (900 and 100 g kg−1 DM; 600 g day−1) was determined in the same four sheep.Treatment differences in organic matter, gross energy, nitrogen (N) and neutral detergent fibre (NDF) digestibility were non-significant. Differences in N retention were not significant.Digestible energy (DE) contents (MJ kg−1 DM) were 13.27, 13.22, 13.21 and 13.21 MJ kg−1 for diets A, B, C and D, respectively. Energy loss in methane was higher (P < 0.05) for Diet A than for other diets. Metabolizable energy (ME) contents for the diets A-D were 11.25, 11.22, 11.32 and 11.40 MJ kg−1 DM, respectively. Metabolizability (q) of the diets averaged 0.642 and was not significantly affected by the diet given. There was a trend for heat production to be higher in sheep given the sucrose-containing diet (C) than in those given other diets (6.34 versus 6.04 MJ day−1) and as a result, energy retention was lower (0.38 versus 0.64 MJ day−1), but the difference did not reach statistical difference. Efficiencies of utilization of ME for maintenance and fattening (kmf) averaged 0.67 and were in good agreement with those predicted from equations of the Agricultural Research Council (1980) excepting the lower kmf (0.63) for Diet C.The mean ME content of SBP calculated by difference was 13.05 MJ kg−1 DM and the corresponding values for mixtures of SBP + starch, SBP + sucrose and SBP + xylose (600 and 400 g kg−1 DM) were 12.98, 13.16 and 13.36 MJ kg−1 DM, respectively.  相似文献   

13.
The effects of body size and habitat variability on ammonia excretion rates (RAMs) of Aphanius iberus were analyzed in situ for the first time. At hourly intervals during a 5‐h field experiment, ammonia excretion was measured in 75 mature specimens from three sampling sites (small creek, marine salt‐mine, and salt‐marsh) established in a gradient of water salinity (0–5; 35–40; 65–70‰). Our results showed a specific size dependence pattern of RAMs in the reproduction period, which might reflect an effect of the reproductive effort. In addition, the results point to a significant decrease in mean RAM values of each population from freshwater aquatic systems (3.81 ± 0.58 μmol g−1 h−1 in fish of 2.8 ± 0.3 mm total length, TL) to salt aquatic systems with significantly higher alkalinity (2.52 ± 0.35 μmol g−1 h−1 in fish of 3.1 ± 0.5 mm TL in marine salt‐mine; 1.98 ± 0.55 μmol g−1 h−1 in fish of 3.1 ± 0.4 mm TL in salt‐marsh). Due to the size‐dependent pattern, RAM in different habitats cannot be compared directly; ancova , followed by residual compared analysis (regression‐related techniques), is seen as a valid method for this purpose. This work presents the first field data on ammonia excretion in the Aphanius genus and the flexible physiologic response characteristic of Cyprinodontids has been demonstrated.  相似文献   

14.
At present there is no standardised heat tolerance test (HTT) procedure adopting a running mode of exercise. Current HTTs may misdiagnose a runner's susceptibility to a hyperthermic state due to differences in exercise intensity. The current study aimed to establish the repeatability of a practical running test to evaluate individual's ability to tolerate exercise heat stress. Sixteen (8M, 8F) participants performed the running HTT (RHTT) (30 min, 9 km h−1, 2% elevation) on two separate occasions in a hot environment (40 °C and 40% relative humidity). There were no differences in peak rectal temperature (RHTT1: 38.82±0.47 °C, RHTT2: 38.86±0.49 °C, Intra-class correlation coefficient (ICC)=0.93, typical error of measure (TEM)=0.13 °C), peak skin temperature (RHTT1: 38.12±0.45, RHTT2: 38.11±0.45 °C, ICC=0.79, TEM=0.30 °C), peak heart rate (RHTT1: 182±15 beats min−1, RHTT2: 183±15 beats min−1, ICC=0.99, TEM=2 beats min−1), nor sweat rate (1721±675 g h−1, 1716±745 g h−1, ICC=0.95, TEM=162 g h−1) between RHTT1 and RHTT2 (p>0.05). Results demonstrate good agreement, strong correlations and small differences between repeated trials, and the TEM values suggest low within-participant variability. The RHTT was effective in differentiating between individuals physiological responses; supporting a heat tolerance continuum. The findings suggest the RHTT is a repeatable measure of physiological strain in the heat and may be used to assess the effectiveness of acute and chronic heat alleviating procedures.  相似文献   

15.
The thermal energetics of rodents from cool, wet tropical highlands are poorly known. Metabolic rate, body temperature and thermal conductance were measured in the moss-forest rat, Rattus niobe (Rodentia), a small murid endemic to the highlands of New Guinea. These data were evaluated in the context of the variation observed in the genus Rattus and among tropical murids. In 7 adult R. niobe, basal metabolic rate (BMR) averaged 53.6±6.6 mL O2 h−1, or 103% of the value predicted for a body mass of 42.3±5.8 g. Compared to other species of Rattus, R. niobe combines a low body temperature (35.5±0.6 °C) and a moderately low minimal wet thermal conductance cmin (5.88±0.7 mL O2 h−1 °C−1, 95% of predicted) with a small size, all of which lead to reduced energy expenditure in a constantly cool environment. The correlations of mean annual rainfall and temperature, altitude and body mass with BMR, body temperature and cmin were analyzed comparatively among tropical Muridae. Neither BMR, nor cmin or body temperature correlated with ambient temperature or altitude. Some of the factors which promote high BMR in higher latitude habitats, such as seasonal exposure to very low temperature and short reproductive season, are lacking in wet montane tropical forests. BMR increased with rainfall, confirming a pattern observed among other assemblages of mammals. This correlation was due to the low BMR of several desert adapted murids, while R. niobe and other species from wet habitats had a moderate BMR.  相似文献   

16.
The contribution of the individual enantiomers ([+]-[R]- and [−]-[S]-propranolol) to rac-propranolol intoxication was studied in anaesthetized, spontaneously breathing (SB) rats and artificially ventilated (AV) rats and rabbits. In the SB rat, propranolol (30 mg.kg−1.h−1 i.v.) decreased heart rate and mean arterial blood pressure and caused hypoventilation, serious hypoxaemia, respiratory acidosis, and death by respiratory arrest. Survival time (ST) in the (+)-(R)-propranolol group (ST 91 ± 5 min) was significantly longer than in the rac-propranolol group (ST 68 ± 6 min). In AV rats and rabbits toxic doses of rac-, (−)-(S)- and (+)-(R)-propranolol, 30 mg.kg−1.h−1 and 15 mg.kg−1.h−1 i.v., respectively, induced comparable effects on haemodynamic variables as in the SB rat. Artificial ventilation lengthened ST by a factor of three to four in rats. In the AV rat, ST's were not significantly different between the rac-, (−)-(S)- and (+)-(R)-propranolol groups. In the rabbit, as in the SB rat, ST in the (+)-(R)-propranolol group was significantly longer than ST's in the rac- and (−)-(S)-propranolol groups. The acute respiratory acidosis in SB rats and the prolonged ST in AV rats suggest that respiratory failure is the primary and cardiovascular failure the secondary cause of death in propranolol intoxication. The potentiation of the toxic effect of the enantiomers observed after dosing the racemate instead of the pure enantiomers could not be explained by a stereoselective difference in plasma propanolol concentration. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Roux‐en‐Y gastric bypass (RYGB) surgery has become an accepted treatment for excessive obesity. We conducted a longitudinal study to assess regional body composition, muscle proteolysis, and energy expenditure before RYGB, and 6 and 12 months after RYGB. Whole‐body and regional fat mass (FM) and lean mass (LM) were assessed via dual energy X‐ray absorptiometry (DXA), and myofibrillar protein degradation was estimated by urinary 3‐methylhistidine (3‐MeH) in 29 subjects. Energy expenditure and substrate oxidation were also determined using a whole‐room, indirect calorimeter in 12 of these subjects. LM loss constituted 27.8 ± 10.2% of total weight loss achieved 12 months postoperatively, with the majority of LM loss (18 ± 6% of initial LM) occurring in the first 6 months following RYGB. During this period, the trunk region contributed 66% of whole‐body LM loss. LM loss occurred in the first 6 months after RYGB despite decreased muscle protein breakdown, as indicated by a decrease in 3‐MeH concentrations and muscle fractional breakdown rates. Sleep energy expenditure (SEE) decreased from 2,092 ± 342 kcal/d at baseline to 1,495 ± 190 kcal/day at 6 months after RYGB (P < 0.0001). Changes in both LM and FM had an effect on the reduction in SEE (P < 0.001 and P = 0.005, respectively). These studies suggest that loss of LM after RYGB is significant and strategies to maintain LM after surgery should be explored.  相似文献   

18.
A model for predicting inter-animal radiant heat exchange in shaded animals is presented, with emphasis on mature cattle. When a cow’s surface temperature is 35 °C, as is common in warmer climates, it loses ~510 Watt m?2 as radiant heat. Net radiant heat balance depends on radiation coming from bodies in the vicinity. In the 30 °C radiant temperature shaded environment typical of warm climates, net radiant loss from a lactating cow is ~60 Watt m?2, i.e., 30 % of its ~173 Watt m?2 heat production. Cows rest for 8–14 h day?1. The heat exchange of a lying cow differs from that of a standing one: the body center is low and 20–30 % of its surface contacts a surface of relatively low heat conductance. Lying reduces the impact of the surrounding shaded area on heat exchange but increases that of heat radiating from neighboring cows. When a cow rests adjacent to other cows, with 1.25 m between body centers when in stalls, it occupies about 140° of the horizontal plane of view. Heat emitted from the animal’s surface reduces the net radiant heat loss of a resting cow by ~30 Watt m?2. In contrast, the presence of cows at 5 and 10 m distance, e.g., cows resting on straw in loose yard housing, reduces the net radiant heat loss of the resting cow by 9 and 5 Watt m?2, respectively. Radiant heat input increases with animal density, which is beneficial in cooler climates, but acts as a stressor in warm climates.  相似文献   

19.

Objective:

This study assessed the effectiveness of a prescribed weight‐loss diet with 0.8 versus 1.4 g protein·kg?1 day?1 on changes in weight, body composition, indices of metabolic syndrome, and resting energy expenditure (REE) in overweight and obese men.

Design and Methods:

Men were randomized to groups that consumed diets containing 750 kcal day?1 less than daily energy needs for weight maintenance with either normal protein (NP, n = 21) or higher protein (HP, n = 22) content for 12 weeks. The macronutrient distributions of the NP and HP diets were 25:60:15, and 25:50:25 percent energy from fat, carbohydrate, and protein, respectively. Assessments were made pre and post intervention. The subjects were retrospectively subgrouped into overweight and obese groups.

Results and Conclusion:

Both diet groups lost comparable body weight and fat. The HP group lost less lean body mass than the NP group (?1.9 ± 0.3 vs. ?3.0 ± 0.4 kg). The effects of protein and BMI status on lean body mass loss were additive. The reductions in total cholesterol, HDL‐C, triacylglycerol, glucose, and insulin, along with LDL‐C, total cholesterol‐to‐HDL‐C ratio, and HOMA‐IR, were not statistically different between NP and HP. Likewise, macronutrient distributions of the diet did not affect the reductions in REE, and blood pressure. In conclusion, energy restriction effectively improves multiple clinical indicators of cardiovascular health and glucose control, and consumption of a higher‐protein diet and accomplishing weight loss when overweight versus obese help men preserve lean body mass over a short period of time.
  相似文献   

20.
It is controversial whether weight loss reduces resting energy expenditure (REE) to a different magnitude in black and white women. This aim of this study was to determine whether changes in REE with weight loss were different between black and white postmenopausal women, and whether changes in body composition (including regional lean and fat mass) were associated with REE changes within each race. Black (n = 26) and white (n = 65) women (age = 58.2 ± 5.4 years, 25 < BMI < 40 kg/m2) completed a 20‐week weight‐loss intervention. Body weight, lean and fat mass (total body, limb, and trunk) via dual‐energy X‐ray absorptiometry, and REE via indirect calorimetry were measured before and after the intervention. We found that baseline REE positively correlated with body weight, lean and fat mass (total, limb, and trunk) in white women only (P < 0.05 for all). The intervention decreased absolute REE in both races similarly (1,279 ± 162 to 1,204 ± 169 kcal/day in blacks; 1,315 ± 200 to 1,209 ± 185 kcal/day in whites). REE remained decreased after adjusting for changes in total or limb lean mass in black (1,302–1,182 kcal/day, P = 0.043; 1,298–1,144 kcal/day, P = 0.006, respectively), but not in white, women. Changes in REE correlated with changes in body weight (partial r = 0.277) and fat mass (partial r = 0.295, 0.275, and 0.254 for total, limb, and trunk, respectively; P < 0.05) independent of baseline REE in white women. Therefore, with weight loss, REE decreased in proportion to the amount of fat and lean mass lost in white, but not black, women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号