首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enormous variation in architecture of flowering plants is based to a large extent on their ability to form new axes of growth throughout their life span. Secondary growth is initiated from groups of pluripotent cells, called meristems, which are established in the axils of leaves. Such meristems form lateral organs and develop into a side shoot or a flower, depending on the developmental status of the plant and environmental conditions. The phytohormone auxin is well known to play an important role in inhibiting the outgrowth of axillary buds, a phenomenon known as apical dominance. However, the role of auxin in the process of axillary meristem formation is largely unknown. In this study, we show in the model species Arabidopsis thaliana and tomato (Solanum lycopersicum) that auxin is depleted from leaf axils during vegetative development. Disruption of polar auxin transport compromises auxin depletion from the leaf axil and axillary meristem initiation. Ectopic auxin biosynthesis in leaf axils interferes with axillary meristem formation, whereas repression of auxin signaling in polar auxin transport mutants can largely rescue their branching defects. These results strongly suggest that depletion of auxin from leaf axils is a prerequisite for axillary meristem formation during vegetative development.  相似文献   

2.
Aerial plant architecture is predominantly determined by shoot branching and leaf morphology, which are governed by apparently unrelated developmental processes, axillary meristem formation, and leaf dissection. Here, we show that in tomato (Solanum lycopersicum), these processes share essential functions in boundary establishment. Potato leaf (C), a key regulator of leaf dissection, was identified to be the closest paralog of the shoot branching regulator Blind (Bl). Comparative genomics revealed that these two R2R3 MYB genes are orthologs of the Arabidopsis thaliana branching regulator REGULATOR OF AXILLARY MERISTEMS1 (RAX1). Expression studies and complementation analyses indicate that these genes have undergone sub- or neofunctionalization due to promoter differentiation. C acts in a pathway independent of other identified leaf dissection regulators. Furthermore, the known leaf complexity regulator Goblet (Gob) is crucial for axillary meristem initiation and acts in parallel to C and Bl. Finally, RNA in situ hybridization revealed that the branching regulator Lateral suppressor (Ls) is also expressed in leaves. All four boundary genes, C, Bl, Gob, and Ls, may act by suppressing growth, as indicated by gain-of-function plants. Thus, leaf architecture and shoot architecture rely on a conserved mechanism of boundary formation preceding the initiation of leaflets and axillary meristems.  相似文献   

3.
During post-embryonic shoot development, new meristems are initiated in the axils of leaves. They produce secondary axes of growth that determine morphological plasticity and reproductive efficiency in higher plants. In this study, we describe the role of the bHLH-protein-encoding Arabidopsis gene REGULATOR OF AXILLARY MERISTEM FORMATION (ROX), which is the ortholog of the branching regulators LAX PANICLE1 (LAX1) in rice and barren stalk1 (ba1) in maize. rox mutants display compromised axillary bud formation during vegetative shoot development, and combination of rox mutants with mutations in RAX1 and LAS, two key regulators of axillary meristem initiation, enhances their branching defects. In contrast to lax1 and ba1, flower development is unaffected in rox mutants. Over-expression of ROX leads to formation of accessory side shoots. ROX mRNA accumulates at the adaxial boundary of leaf and flower primordia. However, in the vegetative phase, axillary meristems initiate after ROX expression has terminated, suggesting an indirect role for ROX in meristem formation. During vegetative development, ROX expression is dependent on RAX1 and LAS activity, and all three genes act in concert to modulate axillary meristem formation.  相似文献   

4.
Axillary shoot formation is a key determinant of plant architecture. Formation of the axillary shoot is regulated by initiation of the axillary meristem or outgrowth of the axillary bud. Here, we show that rice (Oryza sativa) TILLERS ABSENT1 (TAB1; also known as Os WUS), an ortholog of Arabidopsis thaliana WUS, is required to initiate axillary meristem development. We found that formation of the axillary meristem in rice proceeds via a transient state, which we term the premeristem, characterized by the expression of OSH1, a marker of indeterminate cells in the shoot apical meristem. In the tab1-1 (wus-1) mutant, however, formation of the axillary meristem is arrested at various stages of the premeristem zone, and OSH1 expression is highly reduced. TAB1/WUS is expressed in the premeristem zone, where it shows a partially overlapping pattern with OSH1. It is likely, therefore, that TAB1 plays an important role in maintaining the premeristem zone and in promoting the formation of the axillary meristem by promoting OSH1 expression. Temporal expression patterns of WUSCHEL-RELATED HOMEOBOX4 (WOX4) indicate that WOX4 is likely to regulate meristem maintenance instead of TAB1 after establishment of the axillary meristem. Lastly, we show that the prophyll, the first leaf in the secondary axis, is formed from the premeristem zone and not from the axillary meristem.  相似文献   

5.
We studied axillary meristem formation of the lateral suppressor (ls) mutant of tomato after elevating the endogenous cytokinin levels through introduction of the isopentenyltransferase (ipt) gene from Agrobacterium tumefaciens. Growth and development of several transformants were examined during in vitro culture. Transformants exhibited phenotypes varying in severity and were divided into four classes. A number of the ipt transformants had a normal phenotype, as non-transformed plants. Others showed a mild to severe ‘cytokinin-like’ phenotype. Transformants with a mild phenotype exhibited reduced internode length and reduced root development. Transformants with a severe phenotype showed even shorter internodes, loss of apical dominance, reduction of leaf size, production of callus at the basis of the shoots and absence of root development or development of green non-branching roots. The severity of the phenotype correlated well with the level of ipt gene expression, as measured by northern analysis. Transformants with a severe phenotype also exhibited increased levels of zeatin riboside, but zeatin levels were not elevated. The increase in endogenous zeatin riboside levels in the ls mutant did not restore axillary meristem formation, but sometimes bulbous structures were formed in the initially ‘empty’ leaf axils. Several adventitious meristems and shoots developed from below the surface of these structures. It is concluded that a reduced level of cytokinins in the ls mutant shoots is not responsible for the absence of axillary meristem formation.  相似文献   

6.
7.
Plants differ from most animals in their ability to initiate new cycles of growth and development, which relies on the establishment and activity of branch meristems harboring new stem cell niches. In seed plants, this is achieved by axillary meristems, which are established in the axil of each leaf base and develop into lateral branches. Here, we describe the initial processes of Arabidopsis thaliana axillary meristem initiation. Using reporter gene expression analysis, we find that axillary meristems initiate from leaf axil cells with low auxin through stereotypical stages. Consistent with this, ectopic overproduction of auxin in the leaf axil efficiently inhibits axillary meristem initiation. Furthermore, our results demonstrate that auxin efflux is required for the leaf axil auxin minimum and axillary meristem initiation. After lowering of auxin levels, a subsequent cytokinin signaling pulse is observed prior to axillary meristem initiation. Genetic analysis suggests that cytokinin perception and signaling are both required for axillary meristem initiation. Finally, we show that cytokinin overproduction in the leaf axil partially rescue axillary meristem initiation-deficient mutants. These results define a mechanistic framework for understanding axillary meristem initiation.  相似文献   

8.
9.
Axillary meristem initiation and bud growth in rice   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
12.
13.
FISHER, J. B., GOH, C. J. & RAO, A. N., 1989. Non-axillary branching in the palms Eugeissona and Oncosperma (Arecaceae). The south-east Asian palms, Eugeissona (Calamoideae) and Oncosperma (Arecoideae) are multiple-stemmed. The morphology and development of branching in two species of each genus were examined in Singapore, Borneo, and the Malay Peninsula. Cultivated seedling and adult plants of 0. tigillarium were also observed in Florida. A new shoot arises most often from a longitudinal abaxial groove at the base of an enclosing leaf sheath. In some instances, especially in E. tristis , the enclosing leaf has two equal, adjacent grooves such that any distinction between an original mother shoot and a lateral daughter shoot is impossible. No axillary buds occur in Eugeissona which is hapaxanthic. In Oncosperma , which is pleonanthic, axillary buds are absent from young pre-flowering stems, but an inflorescence bud occurs in the axil of each leaf in older aerial stems. Early ontogenetic stages of vegetative branching, as seen in sectioned apices, indicate that a new vegetative shoot is present on the abaxial base of the first (youngest) leaf primordium. There is no ontogenetic evidence for the displacement of an originally axillary meristem as previously described for the palm Salacca (Calamoideae). Shoot development in Eugeissona is interpreted as a putative dichotomy of the apical meristem in which the meristem centres commonly develop unequally. In Oncosperma the smaller sucker bud meristem may be described as an abaxial leaf base bud, but ontogenetic variations indicate this form of branching is close to dichotomous branching. These new examples of non-axillary branching are compared to similar cases previously reported for palms and other monocotyledons.  相似文献   

14.
15.
16.
17.
18.
The AXR1 gene of Arabidopsis is required for many auxin responses. The highly branched shoot phenotype of mature axr1 mutant plants has been taken as genetic evidence for a role of auxin in the control of shoot branching. We compared the development of lateral shoots in wild-type Columbia and axr1-12 plants. In the wild type, the pattern of lateral shoot development depends on the developmental stage of the plant. During prolonged vegetative growth, axillary shoots arise and develop in a basal-apical sequence. After floral transition, axillary shoots arise rapidly along the primary shoot axis and grow out to form lateral inflorescences in an apical-basal sequence. For both patterns, the axr1 mutation does not affect the timing of axillary meristem formation; however, subsequent lateral shoot development proceeds more rapidly in axr1 plants. The outgrowth of lateral inflorescences from excised cauline nodes of wild-type plants is inhibited by apical auxin. axr1-12 nodes are resistant to this inhibition. These results provide evidence for common control of axillary growth in both patterns, and suggest a role for auxin during the late stages of axillary shoot development following the formation of the axillary bud and several axillary leaf primordia.  相似文献   

19.
We studied axillary meristem formation of the lateral suppressor (ls) mutant of tomato after elevating the endogenous cytokinin levels through introduction of the isopentenyltransferase (ipt) gene from Agrobacterium tumefaciens. Growth and development of several transformants were examined during in vitro culture. Transformants exhibited phenotypes varying in severity and were divided into four classes. A number of the ipt transformants had a normal phenotype, as non-transformed plants. Others showed a mild to severe cytokinin-like phenotype. Transformants with a mild phenotype exhibited reduced internode length and reduced root development. Transformants with a severe phenotype showed even shorter internodes, loss of apical dominance, reduction of leaf size, production of callus at the basis of the shoots and absence of root development or development of green non-branching roots. The severity of the phenotype correlated well with the level of ipt gene expression, as measured by northern analysis. Transformants with a severe phenotype also exhibited increased levels of zeatin riboside, but zeatin levels were not elevated. The increase in endogenous zeatin riboside levels in the ls mutant did not restore axillary meristem formation, but sometimes bulbous structures were formed in the initially empty leaf axils. Several adventitious meristems and shoots developed from below the surface of these structures. It is concluded that a reduced level of cytokinins in the ls mutant shoots is not responsible for the absence of axillary meristem formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号