首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative cellular metabolism can be a difficult area of biochemistry to teach in the undergraduate laboratory class. Student practicals involving animal tissues generally require approval from animal ethic committees, and the relevance for students whose primary interest in biochemistry is in the area of food and wine sciences, is often questioned. In this report, we present an undergraduate practical exercise in which glucose catabolism via the pentose phosphate pathway is compared in two types of yeast with direct relevance to the wine and food industries, Saccharomyces cerevisiae and Kloeckera apiculata. The exercise is carried out as a demonstration to second year undergraduate students, studying metabolic biochemistry. It is of some value in that it illustrates comparative cellular metabolism in wine yeasts and introduces the students to the safe use of radioisotopes.  相似文献   

2.
《Biochemical education》1999,27(1):45-47
An advanced biochemistry laboratory has been designed to focus on a detoxifying enzyme, glutathione-S-transferase, which is involved in the metabolism of polycyclic aromatic hydrocarbons (PAHs), pesticides, herbicides, and other electrophilic xenobiotic compounds. The enzyme is known to catalyze conjugation of glutathione to xenobiotics, which makes them water-soluble so that they can be easily discarded through further metabolism and excretion. About two-thirds of the laboratory course incorporates nine advanced biochemical techniques, all focused to analyze various chemical characteristics of the glutathione-S-transferase. The remaining third of the semester time students work on a project that involves application of all the newly acquired techniques to solve a biochemical problem that encompasses the same detoxifying enzyme.  相似文献   

3.
《Biochemical education》1998,26(4):281-285
Laboratory practical work is commonly intercalated with theoretical and seminar classes in packages that cover single units of a given course program. Emphasis is put in to illustrate important theoretical concepts and in to improve students' laboratory handling skills. We observed that this involves serious disadvantages, namely (i) students lack an integrated view of the subjects, (ii) time constraints for each experimental session preclude students to become familiar with most of the techniques and approaches, (iii) how to manipulate laboratory equipment become more important than the objectives and rational explanation of results, (iv) work planning and evaluation of reproducibility of methods are not considered, (v) elaboration and communication of results are not encouraged. To overcome these limitations we developed a new schedule were students get problem-based learning of theoretical concepts during the first half of the course and plan and execute a laboratory project during the second half. The project is performed within one of three main areas: purification, enzyme kinetics or metabolism/molecular genetics, with β-galactosidase as model system. By inducing a more positive attitude in the students towards the practical laboratory work, this schedule allowed us to avoid the mentioned disadvantages while keeping the traditional practical laboratory work objectives met.  相似文献   

4.
5.
6.
The WW domain-containing oxidoreductase (WWOX) encodes a tumor suppressor that is frequently altered in cancer. WWOX binds several proteins and thus is postulated to be involved in a variety of cellular processes. Interestingly, Wwox-knockout mice develop normally in utero but succumb to hypoglycemia and other metabolic defects early in life resulting in their death by 3–4 weeks of age. Cumulative evidence has linked WWOX with cellular metabolism including steroid metabolism, high-density lipoprotein cholesterol (HDL-C) metabolism, bone metabolism and, more recently, glucose metabolism. In this review, we discuss these evolving functions for WWOX and how its deletion affects cellular metabolism and neoplastic progression.  相似文献   

7.
The rate of p-nitroanisole O-demethylation is markedly inhibited by ethanol. To evaluate a role of acetaldehyde in the inhibition by ethanol, a comparison was made of the effects of ethanol and acetaldehyde on the metabolism of p-nitroanisole by isolated liver cells. No effect on the metabolism of p-nitroanisole was found at low concentrations of acetaldehyde (<0.5 mm), whereas inhibition occurred at high concentrations (1 mm). In fact, acetaldehyde was not any more inhibitory than crotonaldehyde, which is a poor substrate for the low-Km mitochondrial aldehyde dehydrogenase. Cyanamide, an inhibitor of acetaldehyde oxidation, did not prevent the inhibition by ethanol. Crotonol, an alcohol that does not change the mitochondrial redox state, in contrast to ethanol, proved to be a more effective inhibitor of the metabolism of p-nitroanisole than ethanol. Greater sensitivity to crotonol was also found in isolated microsomes and may reflect hydrophobic effects by crotonol, relative to ethanol. These results suggest that although high levels of acetaldehyde can be inhibitory, physiological levels of acetaldehyde did not affect the metabolism of p-nitroanisole. It is unlikely that acetaldehyde itself plays a major role in the mechanism by which ethanol inhibits the metabolism of p-nitroanisole. The inhibition of p-nitroanisole O-demethylation by ethanol was prevented by pyruvate or fructose, but not by xylitol, sorbitol, or lactate. All these substrates by themselves stimulated metabolism of p-nitroanisole. Pyruvate and glyceraldehyde (which arises from the metabolism of fructose) can oxidize cytosolic NADH. These results suggest that the generation of cytosolic NADH from the oxidation of ethanol, the subsequent requirement for substrate shuttles to transfer NADH into the mitochondria, and redox inhibition of the citric acid cycle, interfere with the transport of NADPH out of the mitochondria, and consequently with drug metabolism.  相似文献   

8.
Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 μM) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with 18O during growth in H218O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.  相似文献   

9.
10.
Pseudomonas fluorescens CHA0, an antagonist of phytopathogenic fungi in the rhizosphere of crop plants, elaborates and excretes several secondary metabolites with antibiotic properties. Their synthesis depends on three small RNAs (RsmX, RsmY, and RsmZ), whose expression is positively controlled by the GacS-GacA two-component system at high cell population densities. To find regulatory links between primary and secondary metabolism in P. fluorescens and in the related species Pseudomonas aeruginosa, we searched for null mutations that affected central carbon metabolism as well as the expression of rsmY-gfp and rsmZ-gfp reporter constructs but without slowing down the growth rate in rich media. Mutation in the pycAB genes (for pyruvate carboxylase) led to down-regulation of rsmXYZ and secondary metabolism, whereas mutation in fumA (for a fumarase isoenzyme) resulted in up-regulation of the three small RNAs and secondary metabolism in the absence of detectable nutrient limitation. These effects required the GacS sensor kinase but not the accessory sensors RetS and LadS. An analysis of intracellular metabolites in P. fluorescens revealed a strong positive correlation between small RNA expression and the pools of 2-oxoglutarate, succinate, and fumarate. We conclude that Krebs cycle intermediates (already known to control GacA-dependent virulence factors in P. aeruginosa) exert a critical trigger function in secondary metabolism via the expression of GacA-dependent small RNAs.  相似文献   

11.
New antibiotic targets are urgently needed to tackle the multidrug resistant and latent Mycobacterium tuberculosis, the causative agent of the most formidable infectious disease tuberculosis. Sulfur metabolism is essential for the survival and virulence of many pathogens including M. tuberculosis. The absence of most genes involved in microbial sulfur metabolism in human beings suggests abundant novel potential antibiotic targets in pathogen sulfur metabolism. In this article, a comparative genomic landscape of Mycobacterium sulfur metabolism, such as the uptake, activation, and reduction of sulfate and allied enzymes, the biosynthesis pathway of some sulfated metabolites, and the enzymes involved in these pathways were presented. Novel clues for antibiotic targets are put forward.  相似文献   

12.
D-xylose is one of the most abundant carbohydrates in nature. This work focuses on xylose metabolism of Gluconobacter oxydans as revealed by a few studies conducted to understand xylose utilization by this strain. Interestingly, the G. oxydans 621H Δmgdh strain (deficient in membrane-bound glucose dehydrogenase) was greatly inhibited when grown on xylose and no xylonate accumulation was observed in the medium. These experimental observations suggested that the mgdh gene was responsible for the conversion of xylose to xylonate in G. oxydans, which was also verified by whole-cell biotransformation. Since 621H Δmgdh could still grow on xylose in a very small way, two seemingly important genes in the oxo-reductive pathway for xylose metabolism, a xylitol dehydrogenase-encoding gox0865 (xdh) gene and a putative xylulose kinase-encoding gox2214 (xk) gene, were knocked out to investigate the effects of both genes on xylose metabolism. The results showed that the gox2214 gene was not involved in xylose metabolism, and there might be other genes encoding xylulose kinase. Though the gox0865 gene played a less important role in xylose metabolism compared to the mgdh gene, it was significant in xylitol utilization in G. oxydans, which meant that gox0865 was a necessary gene for the oxo-reductive pathway of xylose in vivo. To sum up, when xylose was used as the carbon source, the majority of xylose was directly oxidized to xylonate for further metabolism in G. oxydans, whereas only a minor part of xylose was metabolized by the oxo-reductive pathway.  相似文献   

13.
Jens Nielsen 《FEBS letters》2009,583(24):3905-3913
Lipid metabolism is highly relevant as it plays a central role in a number of human diseases. Due to the highly interactive structure of lipid metabolism and its regulation, it is necessary to apply a holistic approach, and systems biology is therefore well suited for integrated analysis of lipid metabolism. In this paper it is demonstrated that the yeast Saccharomyces cerevisiae serves as an excellent model organism for studying the regulation of lipid metabolism in eukaryotes as most of the regulatory structures in this part of the metabolism are conserved between yeast and mammals. Hereby yeast systems biology can assist to improve our understanding of how lipid metabolism is regulated.  相似文献   

14.
The glutathione and cysteine conjugates of p-benzoquinone are detected and conclusively identified in microsomal incubations of benzene and phenol using liquid chromatography/electrochemistry (LCEC). Identification of the compounds is based on retention time, electrochemical behavior and acid hydrolysis. The fact that both of these compounds can be detected easily in a benzene incubation provides further evidence that p-benzoquinone or the corresponding semiquinone is a product of benzene metabolism in vivo. The conjugation of p-benzoquinone with glutathione is predominantly a nonenzymatic process. This is illustrated by the fact that the addition of cytosolic glutathione-S-transferases do not significantly increase the amount of glutathione conjugate produced in a phenol incubation containing glutathione.The kinetic constants for phenol metabolism to hydroquinone by microsomal protein are calculated. As suspected, the rate of metabolism of phenol is significantly higher than the rate of benzene metabolism. The Vmax for phenol metabolism was calculated to be 7.1 nmol/min/mg protein and the KM was found to be 0.38 mM.The further oxidation of hydroquinone to p-benzoquinone appears to be primarily an enzymatic process. Incubations of just hydroquinone with glutathione at 37°C produced only a small amount of the glutathione conjugate. The addition of cytosolic protein increases the amount of p-benzoquinone produced about 10-fold. This could be due to the peroxidases found in that medium. The addition of microsomal protein and NADPH increases the amount of glutathione conjugate produced to over 100-fold of that produced nonenzymatically. This indicates that a microsomal enzyme is responsible for the oxidation of hydroquinone to p-benzoquinone in vitro and the subsequent covalent binding to macromolecules.  相似文献   

15.
16.
17.
Mycobacterium tuberculosis (Mtb) mutants lacking rv1411c, which encodes the lipoprotein LprG, and rv1410c, which encodes a putative efflux pump, are dramatically attenuated for growth in mice. Here we show that loss of LprG-Rv1410 in Mtb leads to intracellular triacylglyceride (TAG) accumulation, and overexpression of the locus increases the levels of TAG in the culture medium, demonstrating a role of this locus in TAG transport. LprG binds TAG within a large hydrophobic cleft and is sufficient to transfer TAG from donor to acceptor membranes. Further, LprG-Rv1410 is critical for broadly regulating bacterial growth and metabolism in vitro during carbon restriction and in vivo during infection of mice. The growth defect in mice is due to disrupted bacterial metabolism and occurs independently of key immune regulators. The in vivo essentiality of this locus suggests that this export system and other regulators of metabolism should be considered as targets for novel therapeutics.  相似文献   

18.
19.
Pseudomonas aeruginosa is a human pathogen that frequently causes urinary tract and catheter-associated urinary tract infections. Here, using 13C-metabolic flux analysis, we conducted quantitative analysis of metabolic fluxes in the model strain P. aeruginosa PAO1 and 17 clinical isolates. All P. aeruginosa strains catabolized glucose through the Entner-Doudoroff pathway with fully respiratory metabolism and no overflow. Together with other NADPH supplying reactions, this high-flux pathway provided by far more NADPH than needed for anabolism: a benefit for the pathogen to counteract oxidative stress imposed by the host. P. aeruginosa recruited the pentose phosphate pathway exclusively for biosynthesis. In contrast to glycolytic metabolism, which was conserved among all isolates, the flux through pyruvate metabolism, the tricarboxylic acid cycle, and the glyoxylate shunt was highly variable, likely caused by adaptive processes in individual strains during infection. This aspect of metabolism was niche-specific with respect to the corresponding flux because strains isolated from the urinary tract clustered separately from those originating from catheter-associated infections. Interestingly, most glucose-grown strains exhibited significant flux through the glyoxylate shunt. Projection into the theoretical flux space, which was computed using elementary flux-mode analysis, indicated that P. aeruginosa metabolism is optimized for efficient growth and exhibits significant potential for increasing NADPH supply to drive oxidative stress response.  相似文献   

20.
Lipids are important compounds for human physiology and as renewable resources for fuels and chemicals. In lipid research, there is a big gap between the currently available pathway-level representations of lipids and lipid structure databases in which the number of compounds is expanding rapidly with high-throughput mass spectrometry methods.In this work, we introduce a computational approach to bridge this gap by making associations between metabolic pathways and the lipid structures discovered increasingly thorough lipidomics studies. Our approach, called NICELips (Network Integrated Computational Explorer for Lipidomics), is based on the formulation of generalized enzymatic reaction rules for lipid metabolism, and it employs the generalized rules to postulate novel pathways of lipid metabolism. It further integrates all discovered lipids in biological networks of enzymatic reactions that consist their biosynthesis and biodegradation pathways.We illustrate the utility of our approach through a case study of bis(monoacylglycero)phosphate (BMP), a biologically important glycerophospholipid with immature synthesis and catabolic route(s). Using NICELips, we were able to propose various synthesis and degradation pathways for this compound and several other lipids with unknown metabolism like BMP, and in addition several alternative novel biosynthesis and biodegradation pathways for lipids with known metabolism. NICELips has potential applications in designing therapeutic interventions for lipid-associated disorders and in the metabolic engineering of model organisms for improving the biobased production of lipid-derived fuels and chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号