首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coastal waters off the southeastern United States (SEUS) are a primary wintering ground for the endangered North Atlantic right whale (Eubalaena glacialis), used by calving females along with other adult and juvenile whales. Management actions implemented in this area for the recovery of the right whale population rely on accurate habitat characterization and the ability to predict whale distribution over time. We developed a temporally dynamic habitat model to predict wintering right whale distribution in the SEUS using a generalized additive model framework and aerial survey data from 2003/2004 through 2012/2013. We built upon previous habitat models for right whales in the SEUS and include data from new aerial surveys that extend the spatial coverage of the analysis, particularly in the northern portion of this wintering ground. We summarized whale sightings, survey effort corrected for probability of whale detection, and environmental data at a semimonthly resolution. Consistent with previous studies, sea surface temperature (SST), water depth, and survey year were significant predictors of right whale relative abundance. Additionally, distance to shore, distance to the 22°C SST isotherm, and an interaction between time of year and latitude (to account for the latitudinal migration of whales) were also selected in the analysis presented here. Predictions from the model revealed that the location of preferred habitat differs within and between years in correspondence with variation in environmental conditions. Although cow-calf pairs were rarely sighted in the company of other whales, there was minimal evidence that the preferred habitat of cow-calf pairs was different than that of whale groups without calves at the scale of this study. The results of this updated habitat model can be used to inform management decisions for a migratory species in a dynamic oceanic environment.  相似文献   

2.
Sea ducks exhibit complex movement patterns throughout their annual cycle; most species use distinct molting and staging sites during migration and disjunct breeding and wintering sites. Although research on black scoters (Melanitta americana) has investigated movements and habitat selection during winter, little is known about their annual-cycle movements. We used satellite telemetry to identify individual variation in migratory routes and breeding areas for black scoters wintering along the Atlantic Coast, to assess migratory connectivity among wintering, staging, breeding, and molt sites, and to examine effects of breeding site attendance on movement patterns and phenology. Black scoters occupied wintering areas from Canadian Maritime provinces to the southeastern United States. Males used an average of 2.5 distinct winter areas compared to 1.1 areas for females, and within-winter movements averaged 1,256 km/individual. Individuals used an average of 2.1 staging sites during the 45-day pre-breeding migration period, and almost all were detected in the Gulf of St. Lawrence. Males spent less time at breeding sites and departed them earlier than females. During post-breeding migration, females took approximately 25 fewer days than males to migrate from breeding sites to molt and staging sites, and then wintering areas. Most individuals used molt sites in James and Hudson bays before migrating directly to coastal wintering sites, which took approximately 11 days and covered 1,524 km. Males tended to arrive at wintering areas 10 days earlier than females. Individuals wintering near one another did not breed closer together than expected by chance, suggesting weak spatial structuring of the Atlantic population. Females exhibited greater fidelity (4.5 km) to previously used breeding sites compared to males (60 km). A substantial number of birds bred west of Hudson Bay in the Barrenlands, suggesting this area is used more widely than believed previously. Hudson and James bays provided key habitat for black scoters that winter along the Atlantic Coast, with most individuals residing for >30% of their annual cycle in these bays. Relative to other species of sea duck along the Atlantic Coast, the Atlantic population of black scoter is more dispersed and mobile during winter but is more concentrated during migration. These results could have implications for future survey efforts designed to assess population trends of black scoters. © 2021 The Wildlife Society.  相似文献   

3.
Twelve species of North American sea ducks (Tribe Mergini) winter off the eastern coast of the United States and Canada. Yet, despite their seasonal proximity to urbanized areas in this region, there is limited information on patterns of wintering sea duck habitat use. It is difficult to gather information on sea ducks because of the relative inaccessibility of their offshore locations, their high degree of mobility, and their aggregated distributions. To characterize environmental conditions that affect wintering distributions, as well as their geographic ranges, we analyzed count data on five species of sea ducks (black scoters Melanitta nigra americana, surf scoters M. perspicillata, white-winged scoters M. fusca, common eiders Somateria mollissima, and long-tailed ducks Clangula hyemalis) that were collected during the Atlantic Flyway Sea Duck Survey for ten years starting in the early 1990s. We modeled count data for each species within ten-nautical-mile linear survey segments using a zero-inflated negative binomial model that included four local-scale habitat covariates (sea surface temperature, mean bottom depth, maximum bottom slope, and a variable to indicate if the segment was in a bay or not), one broad-scale covariate (the North Atlantic Oscillation), and a temporal correlation component. Our results indicate that species distributions have strong latitudinal gradients and consistency in local habitat use. The North Atlantic Oscillation was the only environmental covariate that had a significant (but variable) effect on the expected count for all five species, suggesting that broad-scale climatic conditions may be directly or indirectly important to the distributions of wintering sea ducks. Our results provide critical information on species–habitat associations, elucidate the complicated relationship between the North Atlantic Oscillation, sea surface temperature, and local sea duck abundances, and should be useful in assessing the impacts of climate change on seabirds.  相似文献   

4.
Most of the known wintering areas of Piping Plovers (Charadrius melodus) are along the Atlantic and Gulf coasts of the United States and into Mexico, and in the Caribbean. However, 1066 threatened/endangered Piping Plovers were recently found wintering in The Bahamas, an area not previously known to be important for the species. Although representing about 27% of the birds counted during the 2011 International Piping Plover Winter Census, the location of their breeding site(s) was unknown. Thus, our objectives were to determine the location(s) of their breeding site(s) using molecular markers and by tracking banded individuals, identify spring and fall staging sites, and examine site fidelity and survival. We captured and color‐banded 57 birds in January and February 2010 in The Bahamas. Blood samples were also collected for genetic evaluation of the likely subspecies wintering in The Bahamas. Band re‐sightings and DNA analysis revealed that at least 95% of the Piping Plovers wintering in The Bahamas originated on the Atlantic coast of the United States and Canada. Re‐sightings of birds banded in The Bahamas spanned the breeding distribution of the species along the Atlantic coast from Newfoundland to North Carolina. Site fidelity to breeding and wintering sites was high (88–100%). Spring and fall staging sites were located along the Atlantic coast of the United States, with marked birds concentrating in the Carolinas. Our estimate of true survival for the marked birds was 0.71 (95% CI: 0.61–0.80). Our results indicate that more than one third of the Piping Plover population that breeds along the Atlantic coast winters in The Bahamas. By determining the importance of The Bahamas to the Atlantic subspecies of Piping Plovers, future conservation efforts for these populations can be better focused on where they are most needed.  相似文献   

5.
Mapping suitable habitat is an important process in wildlife conservation planning. Species distribution reflects habitat selection processes occurring across multiple spatio‐temporal scales. Because habitat selection may be driven by different factors at different scales, conservation planners require information at the scale of the intervention to plan effective management actions. Previous research has described habitat selection processes shaping the distribution of greater sage‐grouse (Centrocercus urophasianus; sage‐grouse) at the range‐wide scale. Finer‐scale information for applications within jurisdictional units inside the species range is lacking, yet necessary, because state wildlife agencies are the management authority for sage‐grouse in the United States. We quantified seasonal second‐order habitat selection for sage‐grouse across the state of Utah to produce spatio‐temporal predictions of their distribution at the southern periphery of the species range. We used location data obtained from sage‐grouse marked with very‐high‐frequency radio‐transmitters and lek location data collected between 1998 and 2013 to quantify species habitat selection in relation to a suite of topographic, edaphic, climatic, and anthropogenic variables using random forest algorithms. Sage‐grouse selected for greater sagebrush (Artemisia spp.) cover, higher elevations, and gentler slopes and avoided lower precipitations and higher temperatures. The strength of responses to habitat variables varied across seasons. Anthropogenic variables previously reported as affecting their range‐wide distribution (i.e., roads, powerlines, communication towers, and agricultural development) were not ranked as top predictors at our focal scale. Other than strong selection for sagebrush cover, the responses we observed differed from what has been reported at the range‐wide scale. These differences likely reflect the unique climatic, geographic, and topographic context found in the southern peripheral area of the species distribution compared to range‐wide environmental gradients. Our results highlight the importance of considering appropriateness of scale when planning conservation actions for wide‐ranging species.  相似文献   

6.
Cownose ray, Rhinoptera bonasus, is a common elasmobranch species along the southeast United States coast that recently has received negative attention. These rays can consume considerable amounts of commercial shellfish raising concerns regarding their control and need for effective management. However, limited information is known regarding their population abundance and migration patterns. We addressed the latter by reviewing 25 tagged cownose rays in Chesapeake Bay with pop-up satellite archival tags (PSATs) to study their movement patterns during summer and fall and identify wintering grounds. Eleven tags provided useful data on temperature, depth, light level and/or end locations. The migration tracks were deciphered through geolocation based on light levels, sea surface temperatures and depth constraints. PSAT end locations indicated southern wintering grounds in the coastal waters of central Florida. Female rays migrated out of Chesapeake Bay at the end of September to early October and continued their southerly migration to Florida. Male rays exited the bay in July and migrated northward based on their estimated movement tracks. The male rays appeared to have a second summer feeding ground off the coast of southern New England. In the fall, males migrated south from New England to the same wintering grounds as the females. No diel differences in habitat use were detected; however, males tended to occupy a wider depth and temperature range compared to females. Information on the movement patterns and habitat use for cownose rays will assist in determining more effective recreational and commercial management plans.  相似文献   

7.
The purpose of many wildlife population studies is to estimate density, movement, or demographic parameters. Linking these parameters to covariates, such as habitat features, provides additional ecological insight and can be used to make predictions for management purposes. Line‐transect surveys, combined with distance sampling methods, are often used to estimate density at discrete points in time, whereas capture–recapture methods are used to estimate movement and other demographic parameters. Recently, open population spatial capture–recapture models have been developed, which simultaneously estimate density and demographic parameters, but have been made available only for data collected from a fixed array of detectors and have not incorporated the effects of habitat covariates. We developed a spatial capture–recapture model that can be applied to line‐transect survey data by modeling detection probability in a manner analogous to distance sampling. We extend this model to a) estimate demographic parameters using an open population framework and b) model variation in density and space use as a function of habitat covariates. The model is illustrated using simulated data and aerial line‐transect survey data for North Atlantic right whales in the southeastern United States, which also demonstrates the ability to integrate data from multiple survey platforms and accommodate differences between strata or demographic groups. When individuals detected from line‐transect surveys can be uniquely identified, our model can be used to simultaneously make inference on factors that influence spatial and temporal variation in density, movement, and population dynamics.  相似文献   

8.
The classical niche theory supports the idea that stable coexistence requires ecological differences between closely related species. However, information on waterbirds coexistence in the entirely landlocked freshwater system of Poyang Lake is not well understood, especially when the available biomass of their food in the area decreases. In this study, we tested the ecological segregation mechanisms in the 2015/2016 and 2016/2017 wintering periods among eight herbivorous waterbirds (including the Siberian crane Grus leucogeranus, hooded crane Grus monacha, white‐naped crane Grus vipio, common crane Grus grus, greater white‐fronted goose Anser albifrons, bean goose Anser fabalis, swan goose Anser cygnoides, and tundra swan Cygnus columbianus) at Poyang Lake. Using field observations and species niche and foraging habitat selection models, we investigated the abundance, distribution, and food sources of these eight waterbird species to quantify and compare their habitat use and ecological niches. Our results showed that niche segregation among the waterbirds, with respect to food types, time, and spatial location, allow them to coexist and use similar resources. The water level gradually receded in the sub‐lakes of the Poyang Lake, which could provide food sources and various habitats for wintering herbivorous waterbirds to coexist. We demonstrated that the differences in habitat use could mitigate interspecific competition, which may explain the mechanism whereby waterbirds of Poyang Lake coexist during the wintering period, despite considerable overlap in the dietary niches of herbivorous waterbirds.  相似文献   

9.
ABSTRACT Geographically isolated breeding populations of migratory shorebirds may be demographically connected through shared nonbreeding habitats. We used long-term (1998–2008) mark-recapture data on piping plovers (Charadrius melodus) collected from 7 separate studies located throughout North America to conduct a range-wide analysis of after hatch year apparent survival (φAHY). Our objectives were to compare concurrent survival estimates from disparate breeding sites and determine whether estimates followed similar trends or were correlated among breeding populations with shared wintering grounds. Average survival estimates were higher for Great Plains populations (range = 0.69–0.81) than for Great Lakes and Atlantic Coast populations (range = 0.56–0.71). Linear trend models indicated that apparent survival declined in 4 out of 7 populations, was unchanged in 3, and was generally highest among Great Plains populations. Based on a post hoc analysis, we found evidence of correlated year-to-year fluctuations in annual survival among populations wintering primarily along the southeastern United States Atlantic Coast and Gulf Coast. Our results indicate shared overwintering or stopover sites may influence annual variation in survival among geographically disparate breeding populations. Declines in piping plover survival are a cause for concern, and our results highlight the need for conservation efforts to include habitat used during the migratory and wintering periods.  相似文献   

10.
Coastal regions on the Pacific north coast of North America provide important wintering habitat for many species of sea ducks. Although winter range and habitat preferences are well described for most species, fidelity to coastal wintering sites is generally undocumented. Fidelity is an important factor necessary for understanding interactions with coastal developments and activities and corresponding management strategies. We used data from Barrow's goldeneyes (Bucephala islandica), a sea duck that winters predominantly in nearshore habitats along the Pacific north coast, to investigate inter-annual fidelity to, and intra-annual fidelity within, coastal wintering sites. Between 2006 and 2015, we marked goldeneyes on breeding, molting, and wintering sites with satellite transmitters. We retained 4,931 locations in coastal habitats from 221 goldeneyes across 4 coastal regions for our analyses. These birds demonstrated high inter-annual fidelity to coastal wintering sites; 75% of selected wintering sites were within 29 km of sites used the previous winter. Inter-annual fidelity to wintering sites was similar between sex and age classes but differed by coastal region. Goldeneyes from southcentral Alaska, USA, expressed greater inter-annual fidelity relative to birds from northern or southern British Columbia, Canada, and southeast Alaska. Goldeneyes also expressed high intra-annual fidelity within wintering sites, with 75% of individuals averaging within-season movements of ≤9 km. Intra-annual fidelity was lesser for female than male goldeneyes but did not differ between hatch-year and after-hatch-year birds. We found regional variation in intra-annual fidelity, with goldeneyes from southcentral Alaska expressing greater intra-annual fidelity compared to birds from other regions. High inter- and intra-annual winter site fidelity by Barrow's goldeneyes suggests that, at a population level, habitat use is predictable and can be used to inform risk assessment or to evaluate factors affecting habitat choice. Also, low dispersal among wintering sites suggests that recovery from population perturbations, whether caused by natural or anthropogenic events, will be protracted. © 2019 The Wildlife Society.  相似文献   

11.
Herbivore foraging decisions are closely related to plant nutritional quality. For arboreal folivores with specialized diets, such as the vulnerable greater glider (Petauroides volans), the abundance of suitable forage trees can influence habitat suitability and species occurrence. The ability to model and map foliar nitrogen would therefore enhance our understanding of folivore habitat use at finer scales. We tested whether high‐resolution multispectral imagery, collected by a lightweight and low‐cost commercial unoccupied aerial vehicle (UAV), could be used to predict total and digestible foliar nitrogen (N and digN) at the tree canopy level and forest stand‐scale from leaf‐scale chemistry measurements across a gradient of mixed‐species Eucalyptus forests in southeastern Australia. We surveyed temperate Eucalyptus forests across an elevational and topographic gradient from sea level to high elevation (50–1200 m a.s.l.) for forest structure, leaf chemistry, and greater glider occurrence. Using measures of multispectral leaf reflectance and spectral indices, we estimated N and digN and mapped N and favorable feeding habitat using machine learning algorithms. Our surveys covered 17 Eucalyptus species ranging in foliar N from 0.63% to 1.92% dry matter (DM) and digN from 0.45% to 1.73% DM. Both multispectral leaf reflectance and spectral indices were strong predictors for N and digN in model cross‐validation. At the tree level, 79% of variability between observed and predicted measures of nitrogen was explained. A spatial supervised classification model correctly identified 80% of canopy pixels associated with high N concentrations (≥1% DM). We developed a successful method for estimating foliar nitrogen of a range of temperate Eucalyptus species using UAV multispectral imagery at the tree canopy level and stand scale. The ability to spatially quantify feeding habitat using UAV imagery allows remote assessments of greater glider habitat at a scale relevant to support ground surveys, management, and conservation for the vulnerable greater glider across southeastern Australia.  相似文献   

12.
AimWe incorporated genetic structure and life history phase in species distribution models (SDMs) constructed for a widespread spiny lobster, to reveal local adaptations specific to individual subspecies and predict future range shifts under the RCP 8.5 climate change scenario.LocationIndo‐West Pacific.MethodsMaxEnt was used to construct present‐day SDMs for the spiny lobster Panulirus homarus and individually for the three genetically distinct subspecies of which it comprises. SDMs incorporated both sea surface and benthic (seafloor) climate layers to recreate discrete influences of these habitats during the drifting larval and benthic juvenile and adult life history phases. Principle component analysis (PCA) was used to infer environmental variables to which individual subspecies were adapted. SDM projections of present‐day habitat suitability were compared with predictions for the year 2,100, under the RCP 8.5 climate change scenario.ResultsIn the PCA, salinity best explained P. h. megasculptus habitat suitability, compared with current velocity in P. h. rubellus and sea surface temperature in P. h. homarus. Drifting and benthic life history phases were adapted to different combinations of sea surface and benthic environmental variables considered. Highly suitable habitats for benthic phases were spatially enveloped within more extensive sea surface habitats suitable for drifting larvae. SDMs predicted that present‐day highly suitable habitats for P. homarus will decrease by the year 2,100.Main conclusionsIncorporating genetic structure in SDMs showed that individual spiny lobster subspecies had unique adaptations, which could not be resolved in species‐level models. The use of sea surface and benthic climate layers revealed the relative importance of environmental variables during drifting and benthic life history phases. SDMs that included genetic structure and life history were more informative in predictive models of climate change effects.  相似文献   

13.
Mammalian mesopredators—mid‐sized carnivores—are ecologically, economically, and socially important. With their adaptability to a variety of habitats and diets, loss of apex predators, and forest regrowth, many of these species are increasing in number throughout the northeastern United States. However, currently the region is seeing extensive landscape alterations, with an increase in residential and industrial development, especially at the expense of existing forest and small‐scale farmland. We sought to understand how important an existing mosaic of working lands (timberland and farmland) in a forested landscape is to mesopredator species. We did this by studying mesopredator occupancy across three land uses (or habitat types): forest reserve (protected), timber harvest (shelterwood cuts), and field (both crop yielding and fallow) in and around a 3200‐ha forest in northeastern Connecticut. We examined coyote (Canis latrans), bobcat (Lynx rufus), fisher (Pekania pennanti), and raccoon (Procyon lotor) occupancy using paired camera traps across juxtaposed reserve, shelterwood, and field units from April 2018 to March 2019. We created a priori habitat variable models for each species and season, as well as analyzed the impact of habitat types on each species. Throughout the year bobcats were positively associated with foliage height diversity and had the highest use in shelterwoods and lowest use in fields. Land use utilization varied seasonally for coyotes and raccoons, with higher use of fields than reserves and shelterwoods for half the year and no difference between land uses and the other half. Both species were not strongly associated with any particular habitat variables. Reserve forest was moderate to highly used by all species for at least half the year, and highly use year‐round by fishers. Our findings reveal that a mosaic of intact forest and working lands, timber harvest, and agriculture can support mesopredator diversity.  相似文献   

14.
Understanding how environmental and climate change can alter habitat overlap of marine predators has great value for the management and conservation of marine ecosystems. Here, we estimated spatiotemporal changes in habitat suitability and inter‐specific overlap among three marine predators: Baltic gray seals (Halichoerus grypus), harbor seals (Phoca vitulina), and harbor porpoises (Phocoena phocoena) under contemporary and future conditions. Location data (>200 tagged individuals) were collected in the southwestern region of the Baltic Sea; one of the fastest‐warming semi‐enclosed seas in the world. We used the maximum entropy (MaxEnt) algorithm to estimate changes in total area size and overlap of species‐specific habitat suitability between 1997–2020 and 2091–2100. Predictor variables included environmental and climate‐sensitive oceanographic conditions in the area. Sea‐level rise, sea surface temperature, and salinity data were taken from representative concentration pathways [RCPs] scenarios 6.0 and 8.5 to forecast potential climate change effects. Model output suggested that habitat suitability of Baltic gray seals will decline over space and time, driven by changes in sea surface salinity and a loss of currently available haulout sites following sea‐level rise in the future. A similar, although weaker, effect was observed for harbor seals, while suitability of habitat for harbor porpoises was predicted to increase slightly over space and time. Inter‐specific overlap in highly suitable habitats was also predicted to increase slightly under RCP scenario 6.0 when compared to contemporary conditions, but to disappear under RCP scenario 8.5. Our study suggests that marine predators in the southwestern Baltic Sea may respond differently to future climatic conditions, leading to divergent shifts in habitat suitability that are likely to decrease inter‐specific overlap over time and space. We conclude that climate change can lead to a marked redistribution of area use by marine predators in the region, which may influence local food‐web dynamics and ecosystem functioning.  相似文献   

15.
The jaguarundi (Puma yagouaroundi) is a small felid with a historical range from central Argentina through southern Texas. Information on the current distribution of this reclusive species is needed to inform recovery strategies in the United States where its last record was in 1986 in Texas. From 2003 to 2021, we conducted camera‐trap surveys across southern Texas and northern Tamaulipas, México to survey for medium‐sized wild cats (i.e., ocelots [Leopardus pardalis], bobcats [Lynx rufus], and jaguarundi). After 350,366 trap nights at 685 camera sites, we did not detect jaguarundis at 16 properties or along 2 highways (1050 km2) in Texas. However, we recorded 126 jaguarundi photographic detections in 15,784 trap nights on 2 properties (125.3 km2) in the northern Sierra of Tamaulipas, Tamaulipas, México. On these properties, latency to detection was 72 trap nights, with a 0.05 probability of detection per day and 0.73 photographic event rate every 100 trap nights. Due to a lack of confirmed class I sightings (e.g., specimen, photograph) in the 18 years of this study, and no other class I observations since 1986 in the United States, we conclude that the jaguarundi is likely extirpated from the United States. Based on survey effort and results from México, we would have expected to detect jaguarundis over the course of the study if still extant in Texas. We recommend that state and federal agencies consider jaguarundis as extirpated from the United States and initiate recovery actions as mandated in the federal jaguarundi recovery plan. These recovery actions include identification of suitable habitat in Texas, identification of robust populations in México, and re‐introduction of the jaguarundi to Texas.  相似文献   

16.
Mid‐ocean ridges generate a myriad of physical oceanographic processes that favor the supply of food and nutrients to suspension‐ and filter‐feeding organisms, such as cold‐water corals and deep‐sea sponges. However, the pioneering work conducted along the Mid‐Atlantic Ridge failed to report the presence of large and dense living coral reefs, coral gardens, or sponge aggregations. Here, we describe the densest, near‐natural, and novel octocoral garden composed of large red and white colonies of Paragorgia johnsoni Gray, 1862 discovered at 545–595 m depth on the slopes of the Mid‐Atlantic Ridge, in the Azores region. This newly discovered octocoral garden is a good candidate for protection since it fits many of the FAO criteria that define what constitutes a Vulnerable Marine Ecosystem. The observations described here corroborate the existence of a close relationship between the octocoral structure and the ambient currents on ridge‐like topographies, providing new insights into the functioning of mid‐ocean ridges'' ecosystems. The ubiquitous presence of biogenic and geological topographies associated with mid‐ocean ridges, which could act as climate refugia, suggests their global importance for deep‐sea biodiversity. A better understanding of the processes involved is, therefore, required. Our observations may inspire future deep‐sea research initiatives to narrow existing knowledge gaps of biophysical connections with benthic fauna at small spatial scales along mid‐ocean ridges.  相似文献   

17.
The local distribution of basking sharks in the Bay of Fundy (BoF) is unknown despite frequent occurrences in the area from May to November. Defining this species’ spatial habitat use is critical for accurately assessing its Special Concern conservation status in Atlantic Canada. We developed maximum entropy distribution models for the lower BoF and the northeast Gulf of Maine (GoM) to describe spatiotemporal variation in habitat use of basking sharks. Under the Maxent framework, we assessed model responses and distribution shifts in relation to known migratory behavior and local prey dynamics. We used 10 years (2002-2011) of basking shark surface sightings from July-October acquired during boat-based surveys in relation to chlorophyll-a concentration, sea surface temperature, bathymetric features, and distance to seafloor contours to assess habitat suitability. Maximum entropy estimations were selected based on AICc criterion and used to predict habitat utilizing three model-fitting routines as well as converted to binary suitable/non-suitable habitat using the maximum sensitivity and specificity threshold. All models predicted habitat better than random (AUC values >0.796). From July-September, a majority of habitat was in the BoF, in waters >100 m deep, and in the Grand Manan Basin. In October, a majority of the habitat shifted southward into the GoM and to areas >200 m deep. Model responses suggest that suitable habitat from July - October is dependent on a mix of distance to the 0, 100, 150, and 200 m contours but in some models on sea surface temperature (July) and chlorophyll-a (August and September). Our results reveal temporally dynamic habitat use of basking sharks within the BoF and GoM. The relative importance of predictor variables suggests that prey dynamics constrained the species distribution in the BoF. Also, suitable habitat shifted minimally from July-September providing opportunities to conserve the species during peak abundance in the region.  相似文献   

18.
The competitive relationship and coexistence pattern among close related species have long been one of the hot issues in ecological research. Interspecies interactions can exert important influences on the local distribution of rare species. Black muntjac Muntiacus crinifrons is an endemic species to eastern China, currently restricted to limited regions. In contrast, Chinese muntjac Muntiacus reevesi is the most common and widespread deer in southern China. Both species co‐occur in southern Anhui and western Zhejiang Province. Little is known about the interaction of these two sympatric‐related species. In this study, to investigate the site use determinants and co‐occurrence pattern of the two sympatric muntjac species, we conducted a camera trap survey across about 250 km2 in mountainous area of southern Anhui Province, China. We adopted a multistep approach to incorporate habitat preferences while modeling occupancy and detection. We found that the two species did not separate along elevation gradient (range from 400 m to 1,400 m) as described in previous studies. Results of single‐species occupancy models indicated that elevation had positive effects on the site use of both species, while slope had an opposite influence on their site use. Positive effects of elevation on the site use implied that both species try to avoid human interference at low elevations. Significant negative effect of slope on the site use of black muntjac suggested that the species prefer habitat with gentle slope and avoided steep. Co‐occurrence models and species interaction factors provided evidence that the two muntjac species had an independent occupancy (ψ BM CM = ψ BM cm, SIF = 1) and exhibited a positive species interaction in detection probability (p BM < r BM CM). Combined with the results of previous studies, we suggested that it was fine differentiation in microhabitats and food resources utilization rather spatial or temporal segregation that allowed the two species co‐occurrence. The site use determinants revealed in our study would be useful for the habitat conservation and restoration for the rare black muntjac, and the co‐occurrence pattern of the two sympatric muntjac species could provide useful information for deep understanding of the coexistence mechanism among forest‐dwelling ungulates.  相似文献   

19.
The Lesser White‐fronted Goose (Anser erythropus), smallest of the “gray” geese, is listed as Vulnerable on the IUCN Red List and protected in all range states. There are three populations, with the least studied being the Eastern population, shared between Russia and China. The extreme remoteness of breeding enclaves makes them largely inaccessible to researchers. As a substitute for visitation, remotely tracking birds from wintering grounds allows exploration of their summer range. Over a period of three years, and using highly accurate GPS tracking devices, eleven individuals of A. erythropus were tracked from the key wintering site of China, to summering, and staging sites in northeastern Russia. Data obtained from that tracking, bolstered by ground survey and literature records, were used to model the summer distribution of A. erythropus. Although earlier literature describes a patchy summer range, the model suggests a contiguous summer habitat range is possible, although observations to date cannot confirm A. erythropus is present throughout the modeled range. The most suitable habitats are located along the coasts of the Laptev Sea, primarily the Lena Delta, in the Yana‐Kolyma Lowland, and smaller lowlands of Chukotka with narrow riparian extensions upstream along major rivers such as the Lena, Indigirka, and Kolyma. The probability of A. erythropus presence is related to areas with altitude less than 500 m with abundant wetlands, especially riparian habitat, and a climate with precipitation of the warmest quarter around 55 mm and mean temperature around 14°C during June‐August. Human disturbance also affects site suitability, with a gradual decrease in species presence starting around 160 km from human settlements. Remote tracking of animal species can bridge the knowledge gap required for robust estimation of species distribution patterns in remote areas. Better knowledge of species'' distribution is important in understanding the large‐scale ecological consequences of rapid global change and establishing conservation management strategies.  相似文献   

20.
During ongoing DNA barcode (COI‐5P) surveys of the macroalgal flora along the northwest Atlantic coast, we discovered a population of Ceramium secundatum in Narragansett Bay, Rhode Island, USA. This species is regarded as common and widespread in the northeast Atlantic, ranging from Norway to Morocco, but until now has not been reported from the western Atlantic. Several lines of evidence suggest that C. secundatum may be introduced to Narragansett Bay: (1) despite extensive collecting, specimens have only been obtained from a limited geographic range in the northwest Atlantic; (2) three other nonindigenous seaweed species are reportedly introduced in this region, which is thought to be a consequence of shipping; and (3) this species is introduced to South Africa and New Zealand. To investigate this suspected introduction, we applied population genetic analyses (using the cox2‐3 spacer) to compare the Narragansett Bay C. secundatum population to native populations in the Republic of Ireland and the United Kingdom. Collectively, analyses of biogeographical and molecular data indicate that C. secundatum is likely introduced to Narragansett Bay. The implications of this discovery are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号