首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Most attempts to describe the distribution of benthic macroinvertebrates in large rivers have used local (grab‐scale) assessments of environmental conditions, and have had limited ability to account for spatial variation in macroinvertebrate populations. 2. We tested the ability of a habitat classification system based on multibeam bathymetry, side‐scan sonar, and chirp sub‐bottom seismics to identify large‐scale habitat units (‘facies’) and account for macroinvertebrate distribution in the Hudson River, a large tidal river in eastern New York. 3. Partial linear regression analysis showed that sediment facies were generally more effective than local or positional variables in explaining various aspects of the macroinvertebrate community (community structure, density of all invertebrates, density of fish forage, density of a pest species –Dreissena polymorpha). 4. Large‐scale habitats may be effective at explaining macroinvertebrate distributions in large rivers because they are integrative and describe habitat at the spatial scales of dominant controlling processes.  相似文献   

2.
渭河丰、枯水期底栖动物群落特征及综合健康评价   总被引:6,自引:0,他引:6  
殷旭旺  李庆南  朱美桦  宋佳  武玮  徐宗学 《生态学报》2015,35(14):4784-4796
以渭河为研究范例,分别于丰水期(2011年10月)和枯水期(2012年4月)对渭河全流域范围内45个样点的底栖动物群落进行跟踪调查,并在此基础上应用丰、枯水期底栖动物生物完整性评价指数(B-IBI)对渭河流域水生态系统进行综合健康评价。结果表明,渭河流域底栖动物群落结构具有明显的空间异质性,枯水期底栖动物群落结构单一,物种数量、生物量和香农多样性明显少于丰水期,但单位密度差异不显著。综合健康评价结果表明,渭河上游、洛河中上游地区的健康状况较好,而渭河中下游、泾河全流域及洛河下游地区的健康状况较差。相关分析显示,渭河全流域范围内丰水期和枯水期底栖动物群落的B-IBI得分呈现明显的正相关性,表明在不同水文过程时期,渭河全流域大尺度范围内底栖动物群落的生物完整性特征较为一致。在河流丰、枯水期,底栖动物群落结构的变化趋势并对比分析了渭河流域不同区域水生态系统健康水平差异的原因。  相似文献   

3.
The aim of this study was to assess and compare the water quality of the Gwebi and Mukuvisi Rivers, on the basis of selected physicochemical variables and macroinvertebrate community structure. Five sites where selected on both rivers and these were sampled on three separate occasions between January and July of 1998. The water variables measured were the concentrations of iron, chromium, zinc, lead, copper, manganese, chlorides, fluorides, sulphates, total phosphates, nitrates, ammonia, total dissolved salts, dissolved oxygen, biological oxygen demand, as well as pH, conductivity, temperature, water surface velocity and discharge. The concentration of most of the chemical variables was relatively similar along the course of the Gwebi River, but there were drastic increases in the levels of iron, chromium, copper, zinc, chlorides, fluorides, sulphates, and ammonia along the Mukuvisi River. The two rivers were different with respect to the physicochemical variables, with the exception of the first site on the Mukuvisi, which was similar to sites on the Gwebi River. This was because of the differences in the levels of human activities on the two rivers. Industrial, sewage and domestic pollution has had an adverse effect on the water quality of the Mukuvisi River. There was a sharp decline in the number of macroinvertebrate taxa along the Mukuvisi River. The lower reaches of the river where dominated by oligochaetes and Chironimidae larvae. Sample score classification of water quality based on the South African Scoring System Version 4 (SASS4) showed that most of the Mukuvisi river had poor quality water quality, whilst much of the Gwebi River had fair quality water. The HABS1 habitat assessment index was used to assess habitat quality at each site. Although much of the Mukuvisi recorded fair to good habitat scores and had generally higher habitat scores than sites on the Gwebi, the SASS scores were generally lower compared to those along the Gwebi. The sample scores and average score per taxon (ASPT) of the SASS4 showed that the Mukuvisi River was of much lower quality than the Gwebi. Both the sample score and ASPT were negatively and significantly (p<0.05) correlated to most of the physicochemical variables. The water quality variables accounted for 61.1% and 59.0% of the differences in the sample score and ASPT respectively. There was a marginal decrease in the Margalef and Shannon indices along the Gwebi River, but the Simpson's index remained relatively constant. Along the Mukuvisi River, there was a clear and distinct decrease in the magnitude of all three diversity indices, indicating decreasing macroinvertebrate community structure. The change in water physicochemical variables accounted for 61.3%, 69.2% and 87.2% of the changes in the Margalef, Shannon and Simpson's index respectively. The study provides evidence that the changes in macroinvertebrate community structure along the Mukuvisi River is due to decline in the water quality. On the Gwebi, water quality is not the main factor determining macroinvertebrate community structure.  相似文献   

4.
1. The effects of natural and human‐induced variability on the composition of macroinvertebrate communities of 28 ponds located in the North Iberian Plateau (Spain) were studied to determine the best predictors of community structure. 2. Constrained ordination was used to identify the main factors explaining the among‐pond variance in abundance (as catch per unit effort) of total macroinvertebrate and Chironomidae assemblages and trophic structure (functional feeding groups). 3. Variance partitioning showed that human disturbance (represented by a pond condition index, total phosphorus concentration and pesticides) was the best predictor of macroinvertebrate community structure, whereas factors, such as habitat and biotic variables were of secondary importance. Factors controlling the chironomid community were broadly similar to those acting on the whole community of macroinvertebrates. In contrast, trophic structure was mainly determined by habitat and biotic variables. 4. Our results show that macroinvertebrates may be used as effective indicators of the ecological status of Mediterranean ponds. The Chironomidae deserve special attention because they were the dominant group in the study ponds and the strongest explanatory variable for their distribution was degradation.  相似文献   

5.
张勇  刘朔孺  于海燕  刘东晓  王备新 《生态学报》2012,32(14):4309-4317
溪流底栖动物群落结构受不同空间尺度环境因子的共同作用。基于2010年钱塘江中游流域60个样点的大型底栖无脊椎动物和环境变量数据,寻找与研究流域底栖动物群落结构变化密切相关的关键环境变量,解析流域尺度和河段尺度的环境因子对底栖动物群落的相对影响。PCA分析表明该区域的主要环境梯度是流域内的土地利用类型及其引起的溪流物理生境退化程度和水体营养状态。CCA分析发现影响底栖动物群落的流域尺度的关键环境变量是纬度、海拔、样点所在流域大小、森林用地百分比,河段尺度是总氮、总磷、钙浓度、二氧化硅浓度和平均底质得分。偏CCA分析得到两种尺度环境因子对底栖动物变异的总解释量为26.4%,流域尺度和河段尺度变量分别为总解释量的50%和31%;方差分解结果表明研究区域大型底栖无脊椎动物受到两种尺度环境因子的综合影响,且流域尺度环境因子较河段尺度环境因子更为重要,体现了其在溪流生态系统保护、恢复、监测和评价中的重要参考价值。  相似文献   

6.
1. Benthic macroinvertebrate community and habitat features varying at the microscale ( 0.09 m 2 ) were measured on one sampling occasion in the Thredbo River, Kosciusko National Park, NSW, Australia.
2. Most of the substratum habitat variables were measured in three dimensions using stereo photography. This is the first time that this method has been used so extensively for this purpose in freshwater ecology.
3. Microhabitat variables most related to benthic macroinvertebrate distribution and abundance were selected with multivariate analyses included rock length, height, area and water velocity. Individual variables alone could not account for macroinvertebrate variation, indicating the importance of interactions among variables.
4. Nine selected habitat variables were used to predict macroinvertebrate taxonomic content of additional sites. Predictions were 87% accurate for taxa with a > 50% chance of occurrence and 93% accuracy for taxa with a > 70% chance of occurrence. Variability observed in macroinvertebrate assemblages at the time of sampling was largely physically controlled and highly deterministic.  相似文献   

7.
We describe the relationship between macroinvertebrate community composition, the physicochemical environment and anthropogenic impacts, in running water sites across a range of water qualities in England and Wales. We have also investigated the degree of spatial structure present in both the macroinvertebrate community and the measured environment. Selected explanatory variables could account for 26% of the variation in lotic macroinvertebrate assemblage composition across England and Wales. The explanatory power of the CCA model was based predominantly on a combination of local scale variables (substrate, alkalinity, urban run-off) and regional scale variables (discharge category, northing). The physicochemical gradient associated with changes in stream type from headwaters to estuary dominated assemblage composition. The influence of pollution and habitat modification were of secondary importance. There was a substantial level of spatial structure to both the physicochemical (47% of its explanatory power spatially structured) and anthropogenic stress data (63% of its explanatory power spatially structured), which resulted in a high level of predictable spatial structuring in macroinvertebrate assemblages. Almost 40% of the variation in assemblage composition accounted for by the explanatory model exhibited spatial structure. Positive spatial autocorrelation in macroinvertebrate community composition extended to sites up to 150km apart. As a consequence, community composition could be described from northing and easting with 75% of the explanatory power of the eight physicochemical variables. Our study has confirmed the importance of the longitudinal gradient within catchments, as well as the geographical position of the catchment to macroinvertebrate communities. We have also demonstrated how quantifying the spatial structure in the dataset can improve our understanding of the factors influencing macroinvertebrate community structure.  相似文献   

8.
The study assessed the impact of damming on water quality and macroinvertebrate assemblages. It also assessed the response of macroinvertebrate‐based indices of water quality to damming. Macroinvertebrate community and physicochemical variables data were collected from 86 sites. Twenty‐nine sites downstream of dams were compared with 27 sites above impoundments and 30 sites on nearby unregulated streams. Of the downstream sites, 13 were situated <1 km from a dam while the other 16 were situated >1 km from a dam. A decrease in temperature, dissolved oxygen, conductivity and total dissolved solids was observed in sites immediately downstream of impoundments. Macroinvertebrate community structure and South African Scoring System (SASS) scores closely followed the damming‐induced changes in water quality. However, water quality variables, macroinvertebrate community structure and SASS scores reverted back to typical upstream conditions in distances around 1 km from dams. Stream recovery from dam‐induced changes was demonstrated with streams recovering at distances around 1 km from the point of regulation in corroboration with predictions of the serial discontinuity concept (SDC). These dam‐induced changes also reflected themselves in SASS scores suggesting potential usefulness of SASS in monitoring ecological integrity of tropical rivers following disturbances like damming.  相似文献   

9.
A critical component in the effort to restore the Kissimmee River ecosystem is the reestablishment of an aquatic invertebrate community typical of free‐flowing rivers of the southeastern United States. This article evaluates early responses of benthic and snag‐dwelling macroinvertebrates to restoration of flow and habitat structure following Phase I construction (interim period) of the Kissimmee River Restoration Project. Replicate benthic and snag samples were collected from remnant river channels in Pool A (Control site), and Pool C, the site of the first phase of restoration (Impact site). Samples were collected quarterly for 2 years prior to construction (baseline) and monthly or quarterly for 3 years following Phase I construction and restoration of flow. Baseline benthic data indicate a community dominated by taxa tolerant of organic pollution and low levels of dissolved oxygen, including the dipterans Chaoborus americanus (Chaoboridae) and the Chironomus/Goeldichironomus group (Chironomidae). Baseline snag data indicate a community dominated by gathering‐collectors, shredders, and scrapers. Passive filtering‐collector invertebrates were rare. Following restoration of flow, benthic invertebrate communities are numerically dominated by lotic taxa, including bivalves and sand‐dwelling chironomids (e.g. Polypedilum spp., Cryptochironomus spp., and Tanytarsini). Snags within the Phase I area support an invertebrate community dominated by passive filtering‐collectors including Rheotanytarsus spp. (Chironomidae) and Cheumatopsyche spp. (Hydropsychidae). Results indicate that restoration of flow has resulted in ecologically significant changes to the river habitat template not observed in Pool A. Observed shifts in benthic and snag macroinvertebrate community structure support previously developed hypotheses for macroinvertebrate responses to hydrologic restoration.  相似文献   

10.
We compared the stream habitat characteristics and macroinvertebrate assemblages of boreal headwater streams in both the Finnish and the Russian parts of a single river basin, the Koitajoki River. Over the last 50 years, the Finnish side of the catchment has been managed using modern forestry techniques, whereas Russian side has remained nearly unexploited and is near to its natural state. Differences in silvicultural activities were observed to contribute to differences in habitat structure. The channel habitats were in fairly natural state in the Russian reference streams, whereas the impacted Finnish sites were cleared and straightened. In comparison with the impacted channels, the abundance of coarse woody debris (CWD) was 10–100-fold higher in the reference streams. Implications on the forestry-induced deterioration of water quality were also observed. On the contrary, only small differences in macroinvertebrate assemblages were detected. Despite the lower amount of retentive structures (CWD), significantly higher relative abundance of shredders was observed in the forestry-impacted streams. Otherwise the zoobenthic communities were quite similar in the two subcatchments. We suggest that several mechanisms may explain this similarity: (1) community structure is controlled by naturally acidic conditions, (2) the adverse impacts of forestry on habitat structure and water quality of streams may be compensated by increased input of deciduous litter and organic compounds from drained, structurally young riparian forests and (3) macroinvertebrate species have flexible feeding habits and may thus readily adapt to changing conditions.  相似文献   

11.
1. The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4‐year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (Δ NBR) from satellite imagery to quantify the percentage of each catchment’s riparian and upland vegetation that burned at high and low severity. 2. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year‐to‐year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. 3. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. 4. These analyses suggest that interactions among fire, flow and stream habitat may increase inter‐annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area.  相似文献   

12.
There is still no assessment of the impact of sediment chemicals and environmental conditions on macroinvertebrates at the scale of the St. Lawrence River. In order to assess these impacts in the fluvial section of the St. Lawrence River including the Montreal harbour, the community structure of macroinvertebrates using different taxonomic aggregations (genus and family) and taxa attributes (abundance, presence–absence, indicator taxa) was assessed. The goal of the study was to determine the indicator taxa of macroinvertebrates along the fluvial continuum and relate changes in macroinvertebrate community to sediment chemical conditions and environmental characteristics of habitats using variance partitioning. This study also evaluated which taxonomic level and taxa attributes of macroinvertebrates were the most suitable for bioassessment of quality of sediments and habitat environment in the St. Lawrence River. Four different macroinvertebrate assemblages were found distributed along the fluvial continuum using either abundance or presence–absence data and genus or family levels. Indicator taxa characteristic of the different macroinvertebrate communities were associated with the sediment contamination gradient. However, habitat environmental characteristics (water masses, sulphur and DOC in sediments) had more influence on macroinvertebrate assemblages than sediment contamination. Our study confirms that family level analysis can give information comparable to the genus level analysis using presence–absence or abundance of macroinvertebrates, yet a higher number of indicator taxa were detected at the genus level.  相似文献   

13.
Spatial and temporal dynamics of macroinvertebrate communities have usually been linked to several environmental and anthropic factors. The aim of this study is to elucidate how important are these factors in structuring macroinvertebrate communities from temperate regions. Regarding the macroinvertebrate number of taxa, the Habitat Template Model, the Dynamic Equilibrium Hypothesis and the Intermediate Disturbance Hypothesis will be tested in order to know how important the diversity of instream elements and the hydrological disturbance frequency are in defining the macroinvertebrate taxonomic richness. Thus, the structure and composition of macroinvertebrate communities were analysed in nine sites of the Pas River basin, a temperate Atlantic basin in northern Spain, during winter, spring, summer and autumn 2005, together with water physicochemical and environmental characteristics. Macroinvertebrate abundance increased downstream and during summer, probably favoured by lower hydraulic stress and water organic enrichment. As predicts the Habitat Template Model, the macroinvertebrate number of taxa was related to habitat heterogeneity. However, no clear relationship amongst macroinvertebrate richness and water quality was found. The macroinvertebrate taxonomic richness did not correspond exactly with the Dynamic Equilibrium Hypothesis and the Intermediate Disturbance Hypothesis because it was relatively high in the absence of hydrological disturbances (summer). Thus, disturbance events may play a secondary role in determining the seasonal dynamic of the number of taxa. However, hydrological disturbances can be considered the most important factors explaining the seasonal pattern of macroinvertebrate abundance. On the other hand, spatial patterns of macroinvertebrate community structure and composition were mainly determined by resource availability, hydraulic conditions, habitat heterogeneity and human alterations, whilst hydrological predictability and resource availability might play a major role in determining seasonal dynamics.  相似文献   

14.
Changes in flow management to restore ecosystem health have been proposed as part of many restoration projects for regulated rivers. However, uncertainty exists about how the biota will respond to flow management changes. The objectives of this study were to estimate the relative importance of key abiotic predictor variables to aquatic macroinvertebrate drift densities in the Missouri River and to compare these results among reaches of the river. A multi-year, multi-location database of spring macroinvertebrate drift net sampling was used to develop relations between drift density and variables representing discharge, temperature, and turbidity in the Missouri River from Fort Randall Dam, South Dakota to the mouth of the Little Nemaha River, Nebraska. Multimodel inference using generalized linear mixed models and an information theoretic approach were used to estimate the relative importance of the predictor variables and the parameters. The results varied by reach. Discharge-related factors were more important at the upstream end of the study area, and turbidity was more important at the downstream end of the study area. Water temperature or degree days were also important predictors in the upstream reaches. The results below Gavins Point Dam suggest that increased macroinvertebrate drift densities are a response to reduced habitat and food availability. The results identify important variables for drift density that could be used in future experimental studies of flow manipulation for the Missouri or other large, regulated rivers. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: L. Mauricio Bini  相似文献   

15.
1. Aquatic communities are structured by multiple forces, and identifying the driving factors over multispatial scales is an important research issue. The East Asian monsoon region is globally one of the richest environments in terms of biodiversity, and is undergoing rapid human development, yet the river ecosystems in this region have not been well studied. We applied a hierarchical framework to incorporate regional and local environmental effects on stream macroinvertebrate communities in this region. The knowledge gained is expected to improve the understanding of the importance of spatial scale on regional and local diversity in the East Asian monsoon region. 2. A national data set of benthic macroinvertebrates and environmental variables (geographical, land‐use, hydrological, substratum and physicochemical elements) in Korean rivers was used to determine the habitat preferences of macroinvertebrates. 3. Latitude, proportion of forest coverage, riffle habitat, silt substratum and temperature were the most important determinants for the ordinations of macroinvertebrate communities in each category evaluated by canonical correspondence analysis (CCA). The optimal habitats for stream macroinvertebrates are not the same for all species, and overall community metrics and abundance of sensitive species tended to be lower in open agricultural and urban streams than in forested streams. The sensitivity of mayflies and stoneflies to anthropogenic disturbances implicated them as good indicators to assess the effects of urban and agricultural activities. 4. A partial CCA was used to evaluate the relative importance of macrohabitat and microhabitat variables on community composition at three spatial scales (whole country, the large Han River basin and two small sub‐basins in the lowlands and highlands). The majority of community variation (17–22% for each environmental element) was explained by macrohabitat variables at the regional spatial scale. In contrast, large proportions (15–18%) were explained by microhabitat variables at the local spatial scale. 5. Our findings indicate that the relative importance of habitat scales should be determined by geographical size and that comprehensive understanding of multispatial scale patterns can be important for implementing sound biodiversity conservation programmes.  相似文献   

16.
流溪河大型底栖动物群落的时空分布及其影响因子   总被引:1,自引:0,他引:1  
流溪河位于我国热带与亚热带过渡区,其底栖动物种类丰富,群落的物种组成结构具有明显的区域性,掌握该地区的物种组成特征及与环境要素的关系是建立生态监测与评估方法的基础。于2018年的枯水期(3月、12月)和丰水期(6月、9月),自流溪河上游至下游共计20个段面对底栖动物进行了定量采样,同时测定了相应的环境因子,采用多元统计方法对流溪河水环境与群落结构及其相关关系进行了分析。共检出底栖动物76个分类单元,隶属于7纲20目50科,其中水生昆虫相对丰度最高,占69.39%。在4个优势分类单元中,摇蚊族(Chironomini)相对丰度为20.19%,河蚬(Corbicula fluminea)、短沟蜷属的一种(Semisulcospira sp.1)、双突细蜉(Caenis bicornis),相对丰度在7%-9%之间。底栖动物丰度和种类多样性均与浊度呈显著负相关;枯水期底栖动物丰度与总磷呈显著负相关,丰水期则呈显著正相关。在丰水期,不同河流级别上底栖动物群落具有明显的差异,表现较强的分布格局,而在枯水期这种分布格局不明显。典范对应分析(CCA)表明,在丰水期,影响或解释流溪河底栖动物群落变化的主要因子为pH、溶解氧、水温、电导率和硅酸盐,而在枯水期则为pH和硝态氮。受电站与采沙的影响,部分河段发生非自然断流和底质的显著改变,导致底质与水深等数据的异常变化,反映了人类活动对该河流生境与环境的重要影响。  相似文献   

17.
Longitudinal distribution and abundance of macroinvertebrate communities were examined in relation to hydrochemical variables along the Chubut River in the Patagonian Precordillera and Plateau, Argentina. The Chubut River (>1000 km) is the largest river in the area and its basin is subject to multiple uses: agriculture, cattle raising, urbanization and the hydrological regime of the lower section is modified by a reservoir. Quantitative benthic samples were collected at 13 sites in the higher, middle and lower sections of the river basin. Sites were visited four times during 2004 and physicochemical parameters, chlorophyll a and particulate organic matter (POM) were assessed. Ninety-five taxa were collected in the study, with total species richness per site ranging from 5 to 51, and benthos density averaging 299–5024 ind m−2. Altitude and turbidity were implicated as important factors determining macroinvertebrate assemblages along the river system, and an eutrophication gradient was documented in the regulated/urbanized section of the main river. High turbidity (TSS) and sedimentation limited algal productivity in the middle basin. Below the dam, TSS, total phosphorus (TP) and POM decreased, whereas soluble reactive phosphorus (SRP) and chlorophyll a increased. Macroinvertebrate density increased three fold in this area possibly due to habitat improvement and enhanced trophic resources. Mean species richness did not change below the impoundment; however the community was dominated by gastropods, chironomids and flatworms. The Chubut River is complex and its biotic community reflects the landscape attributes. While benthic composition and density was governed by turbidity and flood disturbance in some river segments, a greater environmental heterogeneity resulted in an unexpected high number of species at the main channel upper basin.  相似文献   

18.
1. Forestry activities can greatly modify the structure and function of invertebrate communities in streams, but the ability to detect effects of forestry may depend on the spatial scale considered, the choice of response metric and the environmental context. In this study, a multi‐scale, multi‐metric approach was used to compare the usefulness of proximate and larger‐scale measurements of forestry activity for understanding the impacts of forestry on stream macrobenthos. 2. Site‐specific responses of macrobenthic communities to forestry activities measured at four spatial scales (sub‐basin and 8‐, 2‐ and 0.5‐km radii upstream of study sites) were examined for 90 riffle sites distributed among 22 tributary streams (Strahler order 1–5) of the Cascapedia River basin, Quebec, Canada. 3. Multiple regression models and canonical correspondence analysis were used to relate six biological metrics (taxonomic richness, numerical density, biomass density, normalised biomass spectrum, individual body mass and community structure) to variables quantifying logging 1–19 years prior to the study and road density. Environmental predictors (variables quantifying local habitat or landscape features) were included in all analyses to statistically account for environmental context and increase the likelihood of detecting potentially subtle forestry impacts. 4. Forestry activities measured at the larger (sub‐basin and 8 km) scales were linked to decline in taxonomic richness, increase in numerical and biomass densities and shift in size structure of benthic macroinvertebrates, indicating that analyses encompassing larger areas, up to the full basin, may allow for more sensitive detection of effects than those of more limited span. 5. These responses primarily reflected marked increases in the abundance of chironomids and decline in the number of trichopteran taxa with increasing areal coverage of recent (≤2–4 years) cuts, suggesting that larger, longer‐lived and possibly more specialised taxa were more vulnerable to forestry impacts than smaller, multivoltine, generalist invertebrates. After partialling out the influence of other variables, rapid decline in richness occurred even when <1% of the basin had been clear cut in the year prior to the study. 6. Effects of forestry were detected after statistically accounting for natural environmental variability, which may have otherwise concealed those effects. The combined use of multiple biological metrics, partialling out of environmental effects and measurement of impacts at multiple spatial scales may be a broadly applicable approach for enhancing sensitivity and facilitating interpretation in studies of anthropogenic effects on macroinvertebrate communities.  相似文献   

19.
20.
王强  袁兴中  刘红 《生态学报》2012,32(21):6726-6736
浅滩和深潭是山地河流中常见的河流生境结构。2011年7月,在重庆开县东河上游双河口-杉木桥河段,选择21个浅滩和深潭,调查大型底栖动物,研究影响不同生境中底栖动物组成、分布和多样性的生态机理。结果表明:调查河段浅滩和深潭中大型底栖动物分别为31种和24种,密度分别为450.62 个/m2和86.24 个/m2,生物量分别为2.88 g/m2和0.55 g/m2。浅滩有指示种11种,即纹石蛾(Hydropsyche sp.)、假蜉(Iron sp.)、假二翅蜉(Pseudocloeon sp.)、舌石蛾(Glossosoma sp.)、高翔蜉(Epeorus sp.1)、背刺蜉(Notacanthurus sp.)、Heterocloeon sp、锯形蜉(Serratella sp.)、朝大蚊(Antocha sp.)、等蜉(Isonychia sp.)、溪颏蜉(Rhithrogena sp.)。深潭指示种仅蜉蝣(Ephemera sp.)和黑大蚊(Hexatoma sp.)两种。刮食者为两类生境的优势功能摄食类群。浅滩中滤食者和刮食者比例显著高于深潭,而收集者和捕食者显著低于深潭。两类生境中大型底栖动物群落结构差异显著。浅滩中大型底栖动物的密度、生物量、丰富度指数、Shannon-Wiener 指数、改进的Shannon-Wiener指数均明显高于深潭。受地貌形态、水力特征和冲淤变化规律影响的生境稳定性和异质性差异是导致大型底栖动物群落差异的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号