首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fishman L  Willis JH 《Genetics》2005,169(1):347-353
We report the discovery, mapping, and characterization of a meiotic drive locus (D) exhibiting nearly 100% nonrandom transmission in hybrids between two species of yellow monkeyflowers, outcrossing Mimulus guttatus and selfing M. nasutus. Only 1% of F(2) hybrids were M. nasutus homozygotes at the marker most tightly linked to D. We used a set of reciprocal backcrosses to distinguish among male-specific, female-specific, and zygote-specific sources of transmission ratio distortion. Transmission was severely distorted only when the heterozygous F(1) acted as the female parent in crosses to either parental species, ruling out pollen competition and zygote mortality as potential sources of drive. After four generations of backcrossing to M. nasutus, nearly isogenic lines were still >90% heterozygous at markers linked to D, suggesting that heterozygosity at the drive locus alone is sufficient for nonrandom transmission. A lack of dramatic female fitness costs in these lines rules out alternatives involving ovule or seed mortality and points to a truly meiotic mechanism of drive. The strength and direction of drive in this system is consistent with population genetic theory of selfish element evolution under different mating systems. These results are the first empirical demonstration of the strong female-specific drive predicted by new models of selfish centromere turnover.  相似文献   

2.
3.
Somatic cell hybrids between cells of widely divergent mammalian species display a range of chromosomal and genetic anomalies which may be the equivalent of the “genomic shock” phenomena observed in many plant and animal interspecific hybrids. Mouse-kangaroo hybrids show extreme segregation and fragmentation of the kangaroo chromosomes. Here 1 show that, in addition to the chromosomal instability, some hybrids display unstable expression of three genes borne on the kangaroo active maternal X chromosome. These genes (HPRT, G6PD andPGK) may be co-ordinately inactivated at high frequency, then reactivated once more. I suggest that this reversible inactivation in interspecific hybrids may be the result of an unstable change at an X inactivation centre located in the kangaroo Xq.  相似文献   

4.
In situ hybridization was used to examine genome reorganization in asymmetric somatic hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by fusion of gamma-irradiated protoplasts from one of the parents (donor) with non-irradiated protoplasts from the other (recipient). Probing with biotinylated total genomic DNA from either the donor or the recipient species unequivocally identified genetic material from both parents in 31 regenerant plants, each originating from a different nuclear hybrid colony. This method, termed genomic in situ hybridization (GISH), allowed intergenomic translocations containing chromosome segments from both species to be recognized in four regenerants. A probe homologous to the consensus sequence of the Arabidopsis thaliana telomeric repeat (5'-TTTAGGG-3')n, identified telomeres on all chromosomes, including 'mini-chromosomes' originating from the irradiated donor genome. Genomic in situ hybridization to plant chromosomes provides a rapid and reliable means of screening for recombinant genotypes in asymmetric somatic hybrids. Used in combination with other DNA probes, it also contributes to a greater understanding of the events responsible for genomic recovery and restabilization following genetic manipulation in vitro.  相似文献   

5.
The cross compatibility within and between Yulania Spach and Michelia L.(Magnoliaceae) is relatively good and various such hybrids,obtained by conventional artificial hybridization,are available.The aim of the present study was to determine the extent of genome differentiation between the species involved in these crosses through the observation of chromosome pairing during meiosis in pollen mother cells (PMCs) of the hybrids.Chromosome pairing behavior was studied in five species (2n =38) and two interspecific hybrids of Michelia,eight species (2n =38,76 and 114) and 10 interspecific hybrids of Yulania,and three intergeneric hybrids between Michelia and Yulania.The results showed that chromosome pairing was normal with bivalent formation in diploid parental species and in interspecific hybrids.In addition to bivalents,multivalents were encountered in polyploid parental species and polyploid interspecific hybrids.In the intergeneric hybrids between a tetraploid Yulania and two diploid Michelia,19 chromosomes,most likely originating from Michelia,were unable to synapse from zygotene to metaphase I.Meiotic chromosome pairing indicated a high degree of homology between species within Michelia and Yulania and less homology between the genomes of these two genera.The differentiation of morphological characters and the distinctness of natural distribution also support the conclusion that these two genera are likely independent monophyletic groups.This suggests that the two genera were split at early evolution of Magnoliaceae and the overlapping characteristics in external morphology and internal structures of the two genera may be the result of parallel evolution or ancient common ancestry.  相似文献   

6.
Genomic in situ hybridization (GISH) applied to the F1 interspecific hybrid between oilseed rape (Brassica napus, AACC, 2n = 38) and wild radish (Raphanus raphanistrum, RrRr, 2n = 18) showed the predicted 19 chromosomes from B. napus and 9 chromosomes from R. raphanistrum. The very low female fertility of these interspecific hybrids when backcrossed to R. raphanistrum led to only two descendants. Their chromosome number varied between 45 and 48. Both of these progenies showed only 9 chromosomes from R. raphanistrum and 36-39 chromosomes from B. napus. These results indicate the efficiency and limits of GISH as a suitable tool to assess and interpret the behavior of chromosomes after such interspecific crosses. The unexpected chromosome combination is discussed.  相似文献   

7.

Background and Aims

Although there is evidence that both allopolyploid and homoploid hybridization lead to rapid genomic changes, much less is known about hybrids from parents with different basic numbers without further chromosome doubling. Two natural hybrids, Narcissus × alentejanus (2n = 19) and N. × perezlarae (2n = 29), originated by one progenitor (N. cavanillesii, 2n = 28) and two others (N. serotinus, 2n = 10 and N. miniatus, 2n = 30, respectively) allow us to study how DNA content and composition varies in such hybrids.

Methods

Flow cytometry measurements with two staining techniques, PI and DAPI, were used to estimate 2C values and base composition (AT/GC ratio) in 390 samples from 54 wild populations of the two natural hybrids and their parental species. In addition, 20 synthetic F1 hybrid individuals were also studied for comparison.

Key Results

Natural hybrids presented 2C values intermediate between those found in their parental species, although intra-population variance was very high in both hybrids, particularly for PI. Genome size estimated from DAPI was higher in synthetic hybrids than in hybrids from natural populations. In addition, differences for PI 2C values were detected between synthetic reciprocal crosses, attributable to maternal effects, as well as between natural hybrids and those synthetic F1 hybrids in which N. cavanillesii acted as a mother.

Conclusions

Our results suggest that natural hybrid populations are composed of a mixture of markedly different hybrid genotypes produced either by structural chromosome changes, consistent with classic cytogenetic studies in Narcissus, or by transposon-mediated events.  相似文献   

8.
R. Heino  J. Lumme 《Genetica》1989,79(1):17-25
The genetic basis of the difference in cold shock tolerance between the southern temperate Drosophila virilis and its boreal relative D. lummei is studied. After adult eclosion, the parental stocks, reciprocal F1 and backcross hybrids were pretreated for eight days at 18°C or at 6°C. The cold shock used consisted of fast cooling to-10°C and exposure to this temperature for varying lengths of time. D. lummei tolerated such exposure for 40–50% longer than did D. virilis (100–135% after acclimation). Reciprocal F1 females, differing only in their maternal cytoplasm deviated significantly from each other, and the reciprocal F1 males even more so, the contribution of the X chromosome being three to four times that of the cytoplasm. The cold resistance scores of the hybrid males were more extreme than those of the parental stocks. Autosomally heterozygous males with the X chromosome and cytoplasm of virilis were the weakest flies studied. The reciprocal males (X chromosome and cytoplasm of lummei) survived better than the parental lummei stock. The reciprocal differences decreased after cold temperature acclimation. The roles of the four major autosomes were analyzed by backcrossing the reciprocal F1 males with females of the virilis marker stock. The third chromosome of lummei as heterozygous contributed most to cold tolerance, while the other autosomes had a rather weak effect in the opposite direction (virilis homozygotes survived better), which disappeared after acclimation at 6°C. Some of the cold susceptibility of F1 hybrids disappeared in chromosomally identical backcross flies, indicating complex cytoplasmchromosomal interactions.  相似文献   

9.
BACKGROUND AND AIMS: Nuclear DNA amounts of 12 diploid and one tetraploid taxa and 12 natural interspecific hybrids of Cirsium from 102 populations in the Czech Republic, Austria, Slovakia and Hungary were estimated. METHODS: DAPI and PI flow cytometry were used. KEY RESULTS: 2C-values of diploid (2n = 34) species varied from 2.14 pg in C. heterophyllum to 3.60 pg in C. eriophorum (1.68-fold difference); the 2C value for the tetraploid C. vulgare was estimated at 5.54 pg. The DNA contents of hybrids were located between the values of their putative parents, although usually closer to the species with the smaller genome. Biennial species of Cirsium possessed larger nuclear DNA amounts than their perennial relatives. Genome size was negatively correlated with Ellenberg's indicator values for continentality and moisture and with eastern limits of distribution. A negative relationship was also detected between the genome size and the tendency to form natural interspecific hybrids. On the contrary, C-values positively corresponded with the spinyness (degree of spinosity). AT frequency ranged from 48.38 % in C. eriophorum to 51.75 % in C. arvense. Significant intraspecific DNA content variation in DAPI sessions was detected in C. acaule (probably due to the presence of B-chromosomes), and in tetraploid C. vulgare. Only the diploid level was confirmed for the Pannonian C. brachycephalum, generally considered to be tetraploid. In addition, triploidy was discovered for the first time in C. rivulare. CONCLUSIONS: Considerable differences in nuclear DNA content exist among Central European species of Cirsium on the diploid level. Perennial soft spiny Cirsium species of wet habitats and continental distributions generally have smaller genomes. The hybrids of diploid species remain diploid, and their DNA content is smaller than the mean of the parents. Species with smaller genomes produce interspecific hybrids more frequently.  相似文献   

10.
Yellow monkeyflower [Mimulus guttatus DC., (Phyrmaceae)] has long been a model plant species for studies in genetics, evolution, and ecology, including plant–animal interactions. Nonetheless, exceedingly little is known about its secondary chemistry. We have discovered that the foliage of yellow monkeyflower contains a diverse suite of phenylpropanoid glycosides (PPGs); a class of compounds with many known biological activities. Using 1H and 13C NMR and UV and MS chromatography techniques, we positively identified five PPGs from the leaves of yellow monkeyflower. Four of these compounds occur in other species and one is previously undescribed. We also present UV and high-resolution tandem MS data that putatively identify 11 additional foliar compounds as PPGs. This initial discovery and elucidation of yellow monkeyflower's secondary chemistry will be important for continued study of the genetics and ecology of this model species.  相似文献   

11.
Conspecific pollen precedence (CPP) is a major component of reproductive isolation between many flowering plant taxa and may reveal mechanisms of gametophytic evolution within species, but little is known about the genetic basis and evolutionary history of CPP. We systematically investigated the genetic architecture of CPP using patterns of transmission ratio distortion (TRD) in F2 and backcross hybrids between closely related species of Mimulus (Phrymaceae) with divergent mating systems. We found that CPP in Mimulus hybrids was polygenic and was the majority source of interspecific TRD genome-wide, with at least eight genomic regions contributing to the transmission advantage of M. guttatus pollen grains on M. guttatus styles. In aggregate, these male-specific transmission ratio distorting loci (TRDLs) were more than sufficient to account for the 100% precedence of pure M. guttatus pollen over M. nasutus pollen in mixed pollinations of M. guttatus. All but one of these pollen TRDLs were style-dependent; that is, we observed pollen TRD in F(1) and/or M. guttatus styles, but not in M. nasutus styles. These findings suggest that species-specific differences in pollen tube performance accumulate gradually and may have been driven by coevolution between pollen and style in the predominantly outcrossing M. guttatus.  相似文献   

12.
Summary A series of fusion experiments were performed between protoplasts of a cytoplasmic albino mutant of tomato, Lycopersicon esculentum (ALRC), and gamma-irradiated protoplasts of L. hirsutum and the Solanum species S. commersonii, S. etuberosum and S. nigrum. These species were chosen for their different phylogenetic relationships to tomato. In all fusion combinations except from those between ALRC and S. nigrum, green calli were selected as putative fusion products and shoots regenerated from them. They were subsequently analyzed for their morphology, nuclear DNA composition and chloroplast DNA origin. The hybrids obtained between ALRC and L. hirsutum contained the chloroplasts of L. hirsutum and had the flower and leaf morphology of L. esculentum. After Southern blot analysis, using 13 restriction fragment length polymorphisms (RFLPs) randomly distributed over all chromosomes, all hybrids showed L. esculentum hybridization patterns. No chromosomes of L. hirsutum were found. These results indicate that these hybrids were true cybrids.The putative asymmetric hybrids, obtained with S. commersonii and S. etuberosum, showed phenotypic traits of both parents. After hybridization with species-specific repetitive nuclear DNA probes it was found that nuclear material of both parents was present in all plants. In the case of S. nigrum, which combination has the greatest phylogenetic distance between the fusion parents, no hybrid plants could be obtained. The chloroplast DNA of all hybrid plants was of the donor type suggesting that chloroplast transfer by asymmetric protoplast fusion can overcome problems associated with large phylogenetic distances between parental plants.  相似文献   

13.
Growing season length can control plant size over altitudinal and biogeographic scales, but its effect at the scale of meters is largely unexplored. Within the riparian zone of a northern California river, scarlet monkeyflower, Mimulus cardinalis , grows significantly larger at sites high in the channel as compared to sites low in the channel, and even larger where tributaries meet the main stem of the river. We explored the hypothesis that markedly different growing season length controls this size variation. Due to the very gradual retreat of the water level following winter flooding, emergence time is three months longer for plants growing at tributary confluences than for plants growing at low elevations in the channel. Consistent with the growing season length hypothesis, we found no difference in transplant growth between river and tributary confluence sites in an experiment where we equalized growing season length at these locations. Moreover, a second experiment showed that individuals planted earlier in the year gain a distinct size advantage over those planted later, even though growing conditions are less ideal. These results suggest that emergence time may be a key determinant of plant size structure along rivers, an important result considering forecasted variation in water flows with climate change.  相似文献   

14.
The species specificity of heat shock proteins of callus cultures of Nicotiana chinensis, Nicotiana glauca, Nicotiana tabacum, Atropa belladonna, Lycopersicon peruvianum, as well as some somatic hybrids of A. belladonna + N. chinensis, was investigated by means of polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate. Despite the general similarity of electrophoretic mobility of heat shock proteins from different plants, a number of species-specific differences between the proteins of distantly related genera were found. Heat shock proteins may thus serve as genetic markers in somatic hybridization.Abbreviations hs heat shock - hsp heat shock proteins - SDS sodium dodecylsulfate - PAGel'phoresis polyacrylamide gel electrophoresis - TCA trichloroacetic aeid - NA-1(3;5;7;11;15) Atropa belladonna + Nicotiana chinensis, clone 1(3;5;7;11;15)  相似文献   

15.
Chromosome C-banding patterns were analyzed in three closely related flax species (Linum usitatissimum L., 2n = 30; L. angustifolium Huds., 2n = 30; and L. bienne Mill., 2n = 30) and their hybrids. In each case, the karyotype included metacentrics, submetacentrics, and one or two satellite chromosomes. Chromosomes of the three flax species were similar in morphology, size (1-3 microns), and C-banding pattern and slightly differed in size of heterochromatic regions. In all accessions, a large major site of ribosomal genes was revealed by hybridization in the pericentric region of a large metacentric. A minor 45S rDNA site was observed on a small chromosome in L. usitatissimum and L. bienne and on a medium-sized chromosome in L. angustifolium. Upon silver staining, a nucleolus-organizing region (NOR) was detected on a large chromosome in all species. In L. angustifolium, an Ag-NOR band was sometimes seen on a medium-sized chromosome. In the karyotypes of interspecific hybrids, silver-stained rDNA loci were observed on satellite chromosomes of both parental species. RAPD analysis with 22 primers revealed a high similarity of the three species. The greatest difference was observed between L. angustifolium and the other two species. The RAPD patterns of L. bienne and L. usitatissimum differed in fewer fragments. A dendrogram of genetic similarity was constructed for the three flax species on the basis of their RAPD patterns. Genome analysis with chromosome and molecular markers showed that L. bienne must be considered as a subspecies of L. usitatissimum rather than a separate species. The three species were assumed to originate from a common ancestor, L. angustifolium being closest to it.  相似文献   

16.
Outcrossing is maintained in many hermaphroditic species despite theoretical work suggesting that alleles increasing selfing should invade outcrossing populations. Brown and Kelly (2019) identify reasons why this may not have occurred in an outcrossing population of monkeyflower, namely that inbreeding depression causes strong reductions in fitness, resulting in selection for the maintenance of outcrossing. They find that genetic load imposed by rare alleles is inversely correlated with fitness-associated traits, providing evidence that recessive, deleterious alleles contribute to inbreeding depression.  相似文献   

17.
18.
19.
In flowering plants, pollen limitation has been proposed to intensify selection on floral characters important in pollinator attraction, but may also select for traits that increase seed set through autonomous selfing. Here, a factorial design (+/- pollen addition, +/- pollinator removal) was used to investigate how the pollination environment affects selection on floral morphology via female fitness in a mixed-mating population of the yellow monkeyflower, Mimulus guttatus (Phrymaceae). Female fitness was strongly pollen-limited, with supplementally pollinated plants setting 37% more seeds than open-pollinated individuals. Strong positive selection was found on flower length, weak positive selection on flower width : length ratio and no selection on stigma-anther distance in both open-pollinated and supplementally pollinated treatments. By contrast, flowers with relatively narrow corollas and low stigma-anther distances were favored in the pollinator exclusion treatment. These results provide mixed support for the idea that pollen limitation intensifies selection on floral characters. Despite strong phenotypic selection, natural pollen limitation did not mediate selection on characters associated with either pollinator attraction or self-fertilization. However, the novel pattern of selection on severely pollen-limited plants suggests that reproductive assurance against pollinator loss may have been directly involved in the floral evolution of closely related selfing taxa.  相似文献   

20.
Conspicuous differences in floral morphology are partly responsible for reproductive isolation between two sympatric species of monkeyflower because of their effect on visitation of the flowers by different pollinators. Mimulus lewisii flowers are visited primarily by bumblebees, whereas M. cardinalis flowers are visited mostly by hummingbirds. The genetic control of 12 morphological differences between the flowers of M. lewisii and M. cardinalis was explored in a large linkage mapping population of F2 plants n = 465 to provide an accurate estimate of the number and magnitude of effect of quantitative trait loci (QTLs) governing each character. Between one and six QTLs were identified for each trait. Most (9/12) traits appear to be controlled in part by at least one major QTL explaining >/=25% of the total phenotypic variance. This implies that either single genes of individually large effect or linked clusters of genes with a large cumulative effect can play a role in the evolution of reproductive isolation and speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号