首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical model of energy migration and electron transport in photosynthesis of higher plants was considered. The set of different equations describing these processes takes into consideration the states of 4 components of electron transport chain and back reactions of electron transfer from the reduced acceptors to the oxidized reaction centres. The numerical integration of these equations was made for various kinetics parameters characterizing the electron transport chain.  相似文献   

2.
The interaction of quinones (menadione and duroquinone) with DT-diaphorase and mitochondrial electron transport chain translocators at low (120 mosM) and high (400 mosM) values of the medium tonicity in the quinone concentration range of 6-90 microM was studied. It was shown that with a rise in menadione (K3) concentration the number of electron transport carriers interacting with it increase. At K3 concentration of 6 microM the latter is reduced by DT-diaphorase and fully oxidized via the Q-cycle. At K3 concentration of 15 microM the latter is also reduced by DT-diaphorase via the Q-cycle, but in this case the oxidation is incomplete (about 30% K3H2 is oxidized by the terminal part of the respiratory chain). At 90 microM K3 50% of quinone is reduced by DT-diaphorase and 50% by the respiratory chain NADH dehydrogenase complex enzymes; about 30% of K3H2 is oxidized via the Q-cycle, about 20%--by the terminal part of the respiratory chain and about 50%--by O2 without cytochrome oxidase. Unlike menadione, duroquinone (6-90 microM) is reduced only by DT-diaphorase and is oxidized in all cases by cytochrome oxidase. It was shown that the increase in the mitochondrial matrix volume in low tonicity media decreases the rate of the DT-diaphorase shunt operation.  相似文献   

3.
This multi-day exercise is designed for a college genetics and evolution laboratory to demonstrate concepts of inheritance and phenotypic and molecular evolution using a live model organism, Drosophila simulans. Students set up an experimental fruit fly population consisting of ten white-eyed flies and one red-eyed fly. Having red eyes is advantageous compared to having white eyes, allowing students to track the spread of this advantageous trait over several generations. Ultimately, the students perform polymerase chain reaction and gel electrophoresis at two neutral markers, one located in close proximity to the eye color locus and one located at the other end of the chromosome. Students observe that most flies have red eyes, and these red-eyed flies have lost variation at the near marker but maintained variation at the far marker hence observing a ??selective sweep?? and the ??hitchhiking?? of a nearby neutral variant. Students literally observe phenotypic and molecular evolution in their classroom!  相似文献   

4.
Storey BT 《Plant physiology》1972,49(3):314-322
The cytochromes c of mung bean (Phaseolus aureus) mitochondria become reduced when sulfide, a cytochrome oxidase inhibitor free from uncoupling side effects, is added to the aerobic mitochondrial suspension in the absence of added substrate. The cytochromes b remain largely oxidized. Subsequent addition of ATP results in partial oxidation of the cytochromes c and partial reduction of the cytochromes b due to ATP-driven reverse electron transport through the second site of energy conservation, or coupling site, of the respiratory chain. Cytochrome a is also oxidized under these conditions, but there is no concomitant reduction of the flavoprotein components, of ubiquinone, or of endogenous pyridine nucleotide. The reaction is abolished by oligomycin. The reducing equivalents transported from the cytochromes c and a in ATP-driven reverse electron transport are about 2-fold greater than those which appear in the cytochromes b. It is suggested that the equivalents not accounted for are present in a coupling site enzyme at the second site of energy conservation which interacts with the respiratory chain carriers by means of the dithiol-disulfide couple; this couple would not show absorbance changes with redox state over the wavelength range examined. With succinate present, reverse electron transport can be demonstrated at both coupling sites in both the aerobic steady state and in anaerobiosis. ATP-driven reverse electron transport in anaerobiosis maintains cytochrome a 30% oxidized while endogenous pyridine nucleotide is 50% reduced.  相似文献   

5.
Mitochondria in exercise-induced oxidative stress   总被引:5,自引:0,他引:5  
In recent years it has been suggested that reactive oxygen species (ROS) are involved in the damage to muscle and other tissues induced by acute exercise. Despite the small availability of direct evidence for ROS production during exercise, there is an abundance of literature providing indirect support that oxidative stress occurs during exercise. The electron transport associated with the mitochondrial respiratory chain is considered the major process leading to ROS production at rest and during exercise. It is widely assumed that during exercise the increased electron flow through the mitochondrial electron transport chain leads to an increased rate of ROS production. On the other hand, results obtained by in vitro experiments indicate that mitochondrial ROS production is lower in state 3 (ADP-stimulated) than in state 4 (basal) respiration. It is possible, however, that factors, such as temperature, that are modified in vivo during intense physical activity induce changes (uncoupling associated with loss of cytochrome oxidase activity) leading to increased ROS production. The mitochondrial respiratory chain could also be a potential source of ROS in tissues, such as liver, kidney and nonworking muscles, that during exercise undergo partial ischemia because of reduced blood supply. Sufficient oxygen is available to interact with the increasingly reduced respiratory chain and enhance the ROS generation. At the cessation of exercise, blood flow to hypoxic tissues resumes leading to their reoxygenation. This mimics the ischemia-reperfusion phenomenon, which is known to cause excessive production of free radicals. Apart from a theoretical rise in ROS, there is little evidence that exercise-induced oxidative stress is due to its increased mitochondrial generation. On the other hand, if mitochondrial production of ROS supplies a remarkable contribution to exercise-induced oxidative stress, mitochondria should be a primary target of oxidative damage. Unfortunately, there are controversial reports concerning the exercise effects on structural and functional characteristics of mitochondria. However, the isolation of mitochondrial fractions by differential centrifugation has shown that the amount of damaged mitochondria, recovered in the lightest fraction, is remarkably increased by long-lasting exercise.  相似文献   

6.
Bacterial conjugation: a two-step mechanism for DNA transport   总被引:7,自引:0,他引:7  
Ten years ago it was thought that disulphide bond formation in prokaryotes occurred spontaneously. Now two pathways involved in disulphide bond formation have been well characterized, the oxidative pathway, which is responsible for the formation of disulphides, and the isomerization pathway, which shuffles incorrectly formed disulphides. Disulphide bonds are donated directly to unfolded polypeptides by the DsbA protein; DsbA is reoxidized by DsbB. DsbB generates disulphides de novo from oxidized quinones. These quinones are reoxidized by the electron transport chain, showing that disulphide bond formation is actually driven by electron transport. Disulphide isomerization requires that incorrect disulphides be attacked using a reduced catalyst, followed by the redonation of the disulphide, allowing alternative disulphide pairing. Two isomerases exist in Escherichia coli, DsbC and DsbG. The membrane protein DsbD maintains these disulphide isomerases in their reduced and thereby active form. DsbD is kept reduced by cytosolic thioredoxin in an NADPH-dependent reaction.  相似文献   

7.
Heber U  Walker D 《Plant physiology》1992,100(4):1621-1626
Coupled cyclic electron transport is assigned a role in the protection of leaves against photoinhibition in addition to its role in ATP synthesis. In leaves, as in reconstituted thylakoid systems, cyclic electron transport requires “poising,” i.e. availability of electrons at the reducing side of photosystem I (PSI) and the presence of some oxidized plastoquinone between photosystem II (PSII) and PSI. Under self-regulatory poising conditions that are established when carbon dioxide limits photosynthesis at high light intensities, and particularly when stomata are partially or fully closed as a result of water stress, coupled cyclic electron transport controls linear electron transport by helping to establish a proton gradient large enough to decrease PSII activity and electron flow to PSI. This brings electron donation by PSII, and electron consumption by available electron acceptors, into a balance in which PSI becomes more oxidized than it is during fast carbon assimilation. Avoidance of overreduction of the electron transport chain is a prerequisite for the efficient protection of the photosynthetic apparatus against photoinactivation.  相似文献   

8.
Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient analogues by attachment-dependent animal cells cultured on multiwell trays. This system can readily be manipulated within a typical 3-h laboratory period to yield reproducible, biologically relevant, quantitative data regarding key aspects of membrane transport. Each 24-well tray of cultures allows a group of two to four students to compare eight conditions in triplicate. If different groups of students test different conditions or different types of cells, data can be shared for an even broader experience. The exercise is also readily adaptable for open-ended student projects. Here we illustrate the exercise measuring uptake of the nonmetabolizable glucose analogue [(3)H]-2-deoxy-D-glucose. Students successfully tested the effects of competing sugars, putative inhibitors of the GLUT1 transporter, and changes in cell physiology that might be expected to affect glucose transport in epithelial cells and fibroblasts. In this exercise students find the nutritional and medical implications of glucose transport and its regulation intriguing. They also learn to handle radioisotopes and cultured cells.  相似文献   

9.
1. Electron transport particles obtained from cell-free extracts of Propionibacterium shermanii by centrifugation at 105000 times g for 3 hrs oxidized NADH, D,L-lactate, L-glycerol-3-phosphate and succinate with oxygen and, except for succinate, with fumarate, too. 2. Spectral investigation of the electron transport particles revealed the presence of cytochromes b, d and o, and traces of cytochrome alpha1 and a c-type cytochrome. Cytochrome b was reduced by succinate to about 50%, and by NADH, lactate or glycerol-3-phosphate to 80--90%. 3. The inhibitory effects of amytal and rotenone on NADH oxidation, but not on the oxidation of the other substrates, indicated the presence of the NADH dehydrogenase complex, or "site I region", in the electron transport system of P. shermanii. 4. NQNO inhibited substrate oxidations by oxygen and fumarate, as well as equilibration of the flavoproteins of the substrate dehydrogenases by way of menaquinone. The inhibition occurred at low concentrations of the inhibitor and reached 80--100%, depending on the substrate tested. The site of inhibition of the respiratory activity was located between menaquinone and cytochrome b. In addition, inhibition of flavoprotein equilibration suggested that NQNO acted upon the electron transfer directed from menaquinol towards the acceptor to be reduced, either cytochrome b or the flavoproteins, which would include fumarate reductase. 5. In NQNO-inhibited particles, cytochrome b was not oxidized by oxygen-free fumarate, but readily oxidized by oxygen. It was concluded from this and the above evidence that the branching-point of the electron transport chain towards fumarate reductase was located at the menaquinone in P. shermanii. It was further concluded that all cytochromes were situated in the oxygen-linked branch of the chain, which formed a dead end of the system under anaerobic conditions. 6. Antimycin A inhibited only oxygen-linked reactions of the particles to about 50% at high concentrations of the inhibitor. Inhibitors of terminal oxidases were inactive, except for carbon monoxide.  相似文献   

10.
We designed an interrupted case study to teach aerobic cellular respiration to major and nonmajor biology students. The case is based loosely on a real-life incident of rotenone poisoning. It places students in the role of a coroner who must determine the cause of death of the victim. The case is presented to the students in four parts. Each part is followed by discussion questions that the students answer in small groups prior to a classwide discussion. Successive parts of the case provide additional clues to the mystery and help the students focus on the physiological processes involved in aerobic respiration. Students learn the information required to solve the mystery by reading the course textbook prior to class, listening to short lectures interspersed throughout the case, and discussing the case in small groups. The case ends with small group discussions in which the students are given the names and specific molecular targets of other poisons of aerobic respiration and asked to determine which process (i.e., glycolysis, citric acid cycle, or the electron transport chain) the toxin disrupts.  相似文献   

11.
Many topics in the secondary science classroom can be difficult to introduce to students in a manner that fully engages them, especially when presented using traditional teaching methods. However, with a little innovation and an emphasis on inquiry, even dry subjects can be presented in an appealing way. The authors developed an inquiry-based exercise that teaches students about flower anatomy and dissection. During this exercise, students investigate the morphology of simple and composite flowers using digital microscopes. Dissection of a simple flower results in a count of floral parts that is used to construct a floral formula. Students use appearance of structures to suggest function of sepals, petals, anthers, pistils, and components. Investigation of composite and bilabiate flowers introduces concepts of inflorescence and symmetry and asymmetry. Following self-guided inquiry by the students, the teacher uses a digital microscope, computer, and LCD projector to lead discussion of what was observed and to help assimilate important concepts.  相似文献   

12.
A new inhibitor of photoreactions in chloroplasts, 2,3-dimethyl 5-dybroxy 6-phytol benzoquinone is shown to be an electron transfer inhibitor which blocks both cyclic and non-cyclic electron flow. Basal levels of electron transport from reduced dichlorophenol-indophenol to methyl viologen are not affected by the inhibitor, but uncoupler stimulated electron transport in the same system is inhibited. It is concluded that reduced dichlorophenol-indophenol can be oxidized by the photosynthetic electron transport chain in isolated chloroplasts at two sites: site I proximal to P700 and site II distal to P700. Site I has a low affinity for the electron donor. Electron flow from this site to methyl viologen does not suppert ATP formation and it is resistant to inhibition by the quinone analogue. Electron donation at site II, located on the linear portion of the electron transport chain between the two photosystems, has a higher affinity for reduced dichlorophenol-indophenol and precedes a phosphorylation site. The electron flow from this site is stimulated by uncouplers and inhibited by the quinone analogue.Abbreviations DPIP 2,6-dichlorophenol indophenol - MeV methyl viologen - DCMU s-(s, t-dichlocophenyl-1,1-dimethylurca - CCP m-chlorocyanocarbonyl phenylthydrazone - DTE dithioerythritol - PMS phenaxine methosulfate - DMHPB 2,3-dimethyl 5-hydroxy 6-phytol benzoquinone Contribution No. 422 from the Charles F. Kettering Research Laboratory. This research supported in part by the National Science Foundation Grant No. G88432.Supported by an NSF Post-doctoral Fellowship No. 49032.  相似文献   

13.
Mitochondrial diseases (MD) with respiratory chain defects are caused by genetic mutations that determine an impairment of the electron transport chain functioning. Diagnosis often requires a complex approach with measurements of serum lactate, magnetic resonance spectroscopy (MRS), muscle histology and ultrastructure, enzymology, genetic analysis, and exercise testing. The ubiquitous distribution of the mitochondria in the human body explains the multiple organ involvement. Exercise intolerance is a common symptom of MD, due to increased dependence of skeletal muscle on anaerobic metabolism, with an excess lactate generation, phosphocreatine depletion, enhanced free radical production, reduced oxygen extraction and electron flux through the respiratory chain. MD treatment has included antioxidants (vitamin E, alpha lipoic acid), coenzyme Q10, riboflavin, creatine monohydrate, dichloroacetate and exercise training. Exercise is a particularly important tool in diagnosis as well as in the management of these diseases.  相似文献   

14.
The influence of sodium azide on open-chain and flavine mononucleotide mediated cyclic photophosphorylation in isolated spinach chloroplasts was investigated under anaerobic conditions. Open chain phosphorylation was completely inhibited with DCMU both in the presence and absence of sodium azide in the experimental medium. Flavine mononucleotide mediated photophosphorylation was only slightly inhibited by DCMU in the absence of sodium azide but inhibited in two steps by increasing amounts of DCMU when sodium azide was present in the medium. The first step can be explained as being mainly an effect of DCMU on an open chain electron transport, with water and H2O2 as electron donors and with flavine mononucleotide — kept in an oxidized state by sodium azide — as the electron acceptor. The second step, as well as the comparatively insensitivity to DCMU in the absence of sodium azide, depends on cyclic photophosphorylation mediated by flavine mononucleotide.  相似文献   

15.
The photosynthetic electron transport chain in Rhodopseudomonas capsulata cells was investigated by studying light-induced noncyclic electron transport from external donors to O2. Two membrane preparations with opposite membrane polarity, heavy chromatophores and regular chromatophores, were used to characterize this electron transport. It was shown that with lipophylic electron donors such as dichloroindophenol, diaminobenzidine, and phenazine methosulfate the electron transport activities were similar in both types of chromatophores, whereas horse heart cytochrome c, K4Fe(CN)6, 3-sulfonic acid phenazine methosulfate, and ascorbate, which cannot penetrate the membrane, were more active in the heavy chromatophores than in the regular chromatophores. Partial depletion of cytochrome c2 from the heavy chromatophores caused a decrease in the light-induced O2 uptake from reduced dichloroindophenol or ascorbate. The activity could be restored with higher concentrations of dichloroindophenol or with purified cytochrome c2 from Rps. capsulata. It is assumed that in the heavy chromatophores the artificial electron donors are oxidized on the cytochrome c2 level which faces the outside medium. However, cytochrome c2 is not exposed to the outside medium in the regular chromatophores. Therefore, only lipophylic donors would interact with cytochrome c2 in this system, while hydrophylic donors would be oxidized by another component of the electron transport chain which is exposed to the external medium. Studies with inhibitors of photophosphorylation show that antimycin A enhances the light-dependent electron transport to O2 whereas 1:10 phenanthroline inhibited the reaction, but dibromothymoquinone did not affect it. It is assumed that a nonheme iron protein is taking part in this electron transport but not a dibromothymoquinone-sensitive quinone. The terminal oxidase of the light-dependent pathway is different from the two oxidases of the respiratory chain. The ratio between electrons entering the system and molecules of O2 consumed is 4, which means that the end product of O2 reduction is H2O.  相似文献   

16.
The oxidation and reduction of elemental sulfur and reduced inorganic sulfur species are some of the most important energy-yielding reactions for microorganisms living in volcanic hot springs, solfataras, and submarine hydrothermal vents, including both heterotrophic, mixotrophic, and chemolithoautotrophic, carbon dioxide-fixing species. Elemental sulfur is the electron donor in aerobic archaea like Acidianus and Sulfolobus. It is oxidized via sulfite and thiosulfate in a pathway involving both soluble and membrane-bound enzymes. This pathway was recently found to be coupled to the aerobic respiratory chain, eliciting a link between sulfur oxidation and oxygen reduction at the level of the respiratory heme copper oxidase. In contrast, elemental sulfur is the electron acceptor in a short electron transport chain consisting of a membrane-bound hydrogenase and a sulfur reductase in (facultatively) anaerobic chemolithotrophic archaea Acidianus and Pyrodictium species. It is also the electron acceptor in organoheterotrophic anaerobic species like Pyrococcus and Thermococcus, however, an electron transport chain has not been described as yet. The current knowledge on the composition and properties of the aerobic and anaerobic pathways of dissimilatory elemental sulfur metabolism in thermophilic archaea is summarized in this contribution.  相似文献   

17.
18.
Alice L. Givan  R. P. Levine 《BBA》1969,189(3):404-410
Components and reactions of the photosynthetic electron transport chain were investigated in a mutant strain of the unicellular green alga Chlamydomonas reinhardi which is virtually devoid of the System I reaction center pigment, P700. The plastocyanin and ferredoxin isolated from this mutant strain are both qualitatively and quantitatively indistinguishable from that isolated from the wild-type strain. Cytochromes with absorption maxima at 553 and 559 nm cannot be oxidized by far-red light in the mutant strain, but they are reduced by red light. The Fe(CN)63−-Hill reaction in the mutant strain is about 50% of that of wild type at high light intensities; however, at low light levels, it is not significantly different from the rate of wild type. These results are interpreted to indicate that P700 is not so closely involved or complexed with adjacent electron carriers or with the reaction center of System II that destruction of P700 necessarily leads to alteration of these other components of the electron transport chain. It is suggested that the Hill reaction data can be explained by the existence of two separate sites for photoreduction of Fe(CN)63− in wild type, whereas only one remains operative in the mutant strain.  相似文献   

19.
Oxidative damage has been implicated to be a major causative factor in the decline in physiological functions that occur during the ageing process. Mitochondria are known to be a rich source for the production of free radicals and, consequently, mitochondrial components are susceptible to lipid peroxidation (LPO) that decreases respiratory activity. In the present investigation, we have evaluated mitochondrial LPO, 8-oxo-dG, oxidized glutathione, reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and electron transport chain (ETC) complex activities in the brain of young versus aged rats. In aged rats, the contents of LPO, oxidized glutathione and 8-oxo-dG were high whereas reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and ETC complex activities were found to be low. Lipoic acid administration to aged rats reduced the levels of mitochondrial LPO, 8-oxo-dG and oxidized glutathione and enhanced reduced glutathione, ATP, lipoic acid and ETC complex activities. In young rats lipoic acid administration showed only minimal lowering the levels of LPO, 8-oxo-dG and oxidized glutathione and slight increase in the levels of reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and ETC complex activities. These findings suggest that the dithiol, lipoic acid, provides protection against age-related oxidative damage in the mitochondria of aged rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号