首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vigilin is an RNA-binding protein localized to both the cytoplasm and the nucleus and has been previously implicated in heterochromatin formation and chromosome segregation. We demonstrate here that the C-terminal domain of human vigilin binds to the histone methyltransferase SUV39H1 in vivo. This association is independent of RNA and maps to a site on vigilin that is not involved in its interaction with several other known protein partners. Cells that express high levels of the C-terminal fragment display chromosome segregation defects, and ChIP analyses show changes in the status of pericentric β-satellite and rDNA chromatin from heterochromatic to more euchromatic form. Finally, a cell line with inducible expression of the vigilin C-terminal fragment displays inducible alterations in β-satellite chromatin. These and other results lead us to present a new model for vigilin-mediated, RNA-induced gene silencing.  相似文献   

2.
The basic unit of chromatin is the nucleosomal core particle, containing 147 bp of DNA that wraps twice around an octamer of core histones. The core histones bear a highly dynamic N-terminal amino acid tail around 20-35 residues in length and rich in basic amino acids. These tails extending from the surface of nucleosome play an important role in folding of nucleosomal arrays into higher order chromatin structure, which plays an important role in eukaryotic gene regulation. The amino terminal tails protruding from the nuclesomes get modified by the addition of small groups such as methyl, acetyl and phosphoryl groups. In this review, we focus on these complex modi- fication patterns and their biological functions. Moreover, these modifications seem to be part of a complex scheme where distinct histone modifications act in a sequential manner or in combination to form a "histone code" read by other proteins to control the structure and/or function of the chromatin fiber. Errors in this histone code may be involved in many human diseases especially cancer, the nature of which could be therapeutically exploited. Increasing evidence suggests that many proteins bear multiple, distinct modifications, and the ability of one modification to antagonize or synergize the deposition of another can have significant biological consequences.  相似文献   

3.
Cell differentiation is a multi-step process marked by progressive silencing of gene expression through mechanisms believed to involve heterochromatin. We have previously shown that interaction between the Krüppel associated box-containing zinc finger proteins (KRAB-ZFP) corepressor TIF1β and the heterochromatin proteins HP1 is essential for progression through differentiation of embryonal carcinoma F9 cells. This analysis clearly demonstrated the link between gene specific repressors, components of heterochromatin and cell differentiation. In mammals, there are three HP1 isotypes, HP1α, β, and γ, that appear to be involved in both eu- and heterochromatin, but whose individual functions are still poorly defined. Therefore, the aim of the present study was to determine in vivo (i) which HP1 isotypes interact with TIF1β, (ii) in which sub-nuclear compartments these interactions occur and (iii) whether these interactions are regulated during cell differentiation. To address these questions, we established stable F9 cell lines co-expressing TIF1β fused to the ECFP fluorophore and HP1α, β, or γ fused to the EYFP fluorophore. Using the Föster resonance energy transfer (FRET) technology, we map the physical interaction between TIF1β-CFP and the different HP1-YFP isotypes in living F9 cells. We demonstrate that in non-differentiated cells, TIF1β-CFP/HP1-YFP interaction occurs only within euchromatin and involves selectively HP1β-YFP and HP1γ-YFP, but not HP1α-YFP. Furthermore, in differentiated cells, TIF1β-CFP selectively associates with HP1β-YFP within heterochromatin, while TIF1β-CFP/HP1γ-YFP is exclusively present within euchromatin. No physical TIF1β-CFP/HP1α-YFP interaction is detected in neither non differentiated nor differentiated cells. These results support the notion that, in vivo, HP1 isotypes have specific nonredundant functions and provide evidence for HP1β playing an essential role in the shuttling of TIF1β from eu- to heterochromatin during cell differentiation.  相似文献   

4.
5.
Do transgene arrays form heterochromatin in vertebrates?   总被引:2,自引:0,他引:2  
Transgenic Research -  相似文献   

6.
In this study we have taken advantage of recent whole genome sequencing studies that have determined the DNA content in the heterochromatic regions of each Drosophila chromosome to directly correlate the effect on position-effect variegation of a pericentric insertion reporter line, 118E-10 with the total amount of heterochromatic DNA. Heterochromatic DNA levels were manipulated by adding or subtracting a Y chromosome as well as by the difference in the amount of pericentric heterochromatin between the X and Y chromosome. The results showed a direct, linear relationship between the amount of heterochromatic DNA in the genome and the expression of the w marker gene in the 118E-10 pericentric reporter line and that increasing amounts of heterochromatic DNA resulted in increasing amounts of pigment/gene activity. In Drosophila heterochromatic spreading and gene silencing is counteracted by H3S10 phosphorylation by the JIL-1 kinase, and we further demonstrate that the haplo-enhancer effect of JIL-1 is proportional to the amount of total heterochomatin, suggesting that JIL-1's activity is dynamically modulated to achieve a more or less constant balance depending on the levels of heterochromatic factors present.  相似文献   

7.
8.
《Molecular cell》2022,82(19):3566-3579.e5
  1. Download : Download high-res image (135KB)
  2. Download : Download full-size image
  相似文献   

9.
张伟  明镇寰 《生命科学》2006,18(1):80-83
组蛋白乙酰化和去乙酰化可调节染色体的多种功能,例如基因表达和染色体分离等。研究发现,组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitors,HDACIs)可诱导分化、生长阻断和肿瘤细胞凋亡,目前HDACIs正作为抗肿瘤药物进行临床试验,在肿瘤治疗中显示出具有较好的应用前景。然而,人们对于HDACIs在生物体内是如何发挥作用以及不同类型细胞为何会有不同的应答途径却关注甚少。本综述通过讨论HDACIs对周期和非周期细胞中组蛋白去乙酰化酶的抑制结果,来阐明组蛋白乙酰化模式的动力学特征,特别是对基因组异染色质的作用。  相似文献   

10.
11.
12.
13.
14.
15.
To investigate how the complex organization of heterochromatin is reproduced at each replication cycle, we examined the fate of HP1-rich pericentric domains in mouse cells. We find that replication occurs mainly at the surface of these domains where both PCNA and chromatin assembly factor 1 (CAF-1) are located. Pulse-chase experiments combined with high-resolution analysis and 3D modeling show that within 90 min newly replicated DNA become internalized inside the domain. Remarkably, during this time period, a specific subset of HP1 molecules (alpha and gamma) coinciding with CAF-1 and replicative sites is resistant to RNase treatment. Furthermore, these replication-associated HP1 molecules are detected in Suv39 knockout cells, which otherwise lack stable HP1 staining at pericentric heterochromatin. This replicative pool of HP1 molecules disappears completely following p150CAF-1 siRNA treatment. We conclude that during replication, the interaction of HP1 with p150CAF-1 is essential to promote delivery of HP1 molecules to heterochromatic sites, where they are subsequently retained by further interactions with methylated H3-K9 and RNA.  相似文献   

16.
17.
Chromatin within swollen or lysed isolated sperm nuclei of the sea urchin, Strongylocentrotus purpuratus, was examined by electron microscopy. Spread preparations of lysed sperm nuclei demonstrated dense aggregates of nondispersed material and beaded filaments radiating from these aggregates. These beaded fibers are similar in size and appearance to the “beads-on-a-string” seen as characteristic of chromatin spreads from numerous interphase nuclei. The beads are nucleosomes that have an average diameter of 130 Å. The interconnecting string is 40 Å indiameter and corresponds to the spacer DNA. In thin sections of swollen nuclei the sperm chromatin appears to be composed of 400 Å superbeads that are closely apposed to form 400 Å fibers. As the chromatin disperses, the superbeads are seen to be attached to one another by chromatin fibers of 110 Å diameter. In thin sections, the 400 Å superbeads appear to disperse directly into the 110 Å fibers with no intervening structures. This work demonstrates that the heterochromatin in Strongylocentrotus purpuratus sperm nuclei is composed of nucleosomes that form 100 Å filaments that are compacted into 400 Å superbeads. The superbeads coalesce to give the morphological appearance of 400 Å fibers.  相似文献   

18.
Sadaie M  Iida T  Urano T  Nakayama J 《The EMBO journal》2004,23(19):3825-3835
The chromodomain is a conserved motif that functions in the epigenetic control of gene expression. Here, we report the functional characterization of a chromodomain protein, Chp1, in the heterochromatin assembly in fission yeast. We show that Chp1 is a structural component of three heterochromatic regions-centromeres, the mating-type region, and telomeres-and that its localization in these regions is dependent on the histone methyltransferase Clr4. Although deletion of the chp1(+) gene causes centromere-specific decreases in Swi6 localization and histone H3-K9 methylation, we show that the role of Chp1 is not exclusive to the centromeres. We found that some methylation persists in native centromeric regions in the absence of Chp1, which is also true for the mating-type region and telomeres, and determined that Swi6 and Chp2 are critical to maintaining this residual methylation. We also show that Chp1 participates in the establishment of repressive chromatin in all three chromosomal regions. These results suggest that different heterochromatic regions share common structural properties, and that centromeric heterochromatin requires Chp1-mediated establishment steps differently than do other heterochromatic regions.  相似文献   

19.
Amassments of heterochromatin in somatic cells occur in close contact with the nuclear envelope (NE) but are gapped by channel‐ and cone‐like zones that appear largely free of heterochromatin and associated with the nuclear pore complexes (NPCs). To identify proteins involved in forming such heterochromatin exclusion zones (HEZs), we used a cell culture model in which chromatin condensation induced by poliovirus (PV) infection revealed HEZs resembling those in normal tissue cells. HEZ occurrence depended on the NPC‐associated protein Tpr and its large coiled coil‐forming domain. RNAi‐mediated loss of Tpr allowed condensing chromatin to occur all along the NE's nuclear surface, resulting in HEZs no longer being established and NPCs covered by heterochromatin. These results assign a central function to Tpr as a determinant of perinuclear organization, with a direct role in forming a morphologically distinct nuclear sub‐compartment and delimiting heterochromatin distribution.  相似文献   

20.
N-terminal modifications of nucleosomal core histones are involved in gene regulation, DNA repair and recombination as well as in chromatin modeling. The degree of individual histone modifications may vary between specific chromatin domains and throughout the cell cycle. We have studied the nuclear patterns of histone H3 and H4 acetylation and of H3 methylation in Arabidopsis. A replication-linked increase of acetylation only occurred at H4 lysine 16 (not for lysines 5 and 12) and at H3 lysine 18. The last was not observed in other plants. Strong methylation at H3 lysine 4 was restricted to euchromatin, while strong methylation at H3 lysine 9 occurred preferentially in heterochromatic chromocenters of Arabidopsis nuclei. Chromocenter appearance, DNA methylation and histone modification patterns were similar in nuclei of wild-type and kryptonite mutant (which lacks H3 lysine 9-specific histone methyltransferase), except that methylation at H3 lysine 9 in heterochromatic chromocenters was reduced to the same low level as in euchromatin. Thus, a high level of H3methylK9 is apparently not necessary to maintain chromocenter structure and does not prevent methylation of H3 lysine 4 within Arabidopsis chromocenters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号