首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in worm burden, distribution, length, and fecundity after and during single and repeated inoculations of 10, 50, or 500 larvae of Strongyloides ratti were examined in rats. Worm burden after a single inoculation of a higher larval dose reduced rapidly. Repeated inoculations of lower larval doses at weekly intervals led to a delayed peak and slower reduction of worm burden; the repeated inoculations of 10 larvae did not induce worm expulsion for at least 7 wk. In repeated inoculations at 3-wk intervals, a primary inoculation of 500 larvae induced strong resistance to reinfection at week 3, whereas no resistance was induced until week 6 in rats receiving repeated inoculations of 10 or 50 larvae. Similar dose-dependent reductions in worm length and fecundity were observed in single and repeated inoculations, and the reductions began earlier than worm expulsion. Intestinal migration of worms from the upper small intestine to the large intestine was observed during the course of single and repeated inoculations. Earlier and clearer migration was observed in rats receiving higher doses. These findings indicate that in S. ratti infection, the changes of worm burden, distribution, length, and fecundity are dependent on the inoculated larval dose.  相似文献   

2.
Immunogenicity of adult Strongyloides ratti was studied in rats. Immunization of rats by intraduodenal implantation of adult worms could completely inhibit the egg production and hasten the expulsion of challenged worms which were developed from subcutaneously inoculated L3 or were implanted intraduodenally as adults. Enteral immunization by intraduodenal implantation of adult worms was, however, not able to affect the esophageal larval output of the challenge infection with L3. In contrast to enteral immunization with adult worms, immunization by full sequence of a primary infection or by a combination of drug-abbreviated infection and adult worm implantation could suppress the esophageal larval output of the challenge infection. The relationship between the host defense mechanism and the life cycle of S. ratti is discussed.  相似文献   

3.
Immune mesenteric lymph node cells (IMLNC) and hyperimmune serum, alone or in combination, were transferred to recipient, syngeneic Lewis rats. On the day of cell transfer, the recipients, along with appropriate controls, were infected with 1,000Strongyloides ratti larvae. Twelve days later, the number of adult worms in the anterior small intestine was counted and the number ofS. ratti eggs in the terminal uterus of representative female worms was determined. Using these methods, we showed that worm fecundity was reduced in the IMLNC recipients, the hyperimmune serum recipients, and the recipients of both cells and serum as compared with regular controls (averages of 2.45, 2.93, and 2.98 eggs, respectively, vs. 4.73 eggs). The number of adult worms recovered from the IMLNC recipients was not reduced (474.6 worms). However, significantly fewer worms were recovered from the recipients of IMLNC-hyperimmune serum and the recipients of hyperimmune serum only as compared with regular controls (184.8 and 171.5 worms, respectively, vs. 567.2 worms). A working hypothesis, involving an interaction of serum and cellular components, is postulated as the mechanism for this protective response.  相似文献   

4.
Negative density-dependent effects on the fitness of parasite populations are an important force in their population dynamics. For the parasitic nematode Strongyloides ratti, density-dependent fitness effects require the rat host immune response. By analysis of both measurements of components of parasite fitness and of the host immune response to different doses of S. ratti infection, we have identified specific parts of the host immune response underlying the negative density-dependent effects on the fitness of S. ratti. The host immune response changes both qualitatively from an inflammatory Th1- to a Th2-type immune profile and the Th2-type response increases quantitatively, as the density of S. ratti infection increases. Parasite survivorship was significantly negatively related to the concentration of parasite-specific IgG(1) and IgA, whereas parasite fecundity was significantly negatively related to the concentration of IgA only.  相似文献   

5.
The generation of protective immunity by various stages in the life-cycle of Strongyloides ratti and the phases against which resistance is directed has been examined in murine strongyloidiasis. Mice were exposed to natural, complete infections, were treated with thiabendazole (which largely resembles the natural infection), were treated with cambendazole (which restricts infection to the larval stage), or infected directly by oral transfer of adult worms. Mice that were infected with infective larvae alone did not become resistant to infective larvae or the complete infection but were resistant to adult worms implanted directly into the gut. Mice exposed to adult worms alone were resistant to natural infections and adults worms implanted directly but were not resistant to infective larvae. On the other hand, mice that had received prior natural infections showed evidence of resistance to infective larvae, adult worms, and natural, complete infections. It is concluded that there is immunological cross-reactivity between infective larvae and adult worms but that under certain circumstances the infective larvae are able to evade the host's protective immune response.  相似文献   

6.
Generation of intestinal immunity by antigenic stimulation with preintestinal, tissue-migrating larvae was investigated in the Strongyloides ratti-rat model. The results of daily fecal egg counts showed that the intestinal immunity against adult worms could be partially generated by priming with preintestinal migrating larvae. A further study demonstrated that this partial reduction of daily fecal egg count was mainly the result of inhibitory effects on the fecundity of the parasitic females, although the expulsion of the parasite from the gut could be advanced by several days. After tertiary immunization with preintestinal larvae, no significant potentiation in the protection was observed when compared with the rats treated by primary immunization alone.  相似文献   

7.
Nematode infections are a ubiquitous feature of vertebrate life. In nature, such nematode infections are acquired by continued exposure to infective stages over a prolonged period of time. By contrast, experimental laboratory infections are typically induced by the administration of a single (and often large) dose of infective stages. Previous work has shown that the size of an infection dose can have significant effects on anti-nematode immune responses. Here we investigated the effect of different infection regimes of Strongyloides ratti, comparing single and repeated dose infections, on the host immune response that was elicited. We considered and compared infections of the same size, but administered in different ways. We considered infection size in two ways: the maximum dose of worms administered and the cumulative worm exposure time. We found that both infection regimes resulted in Th2-type immune response, characterised by IL4 and IL13 produced by S. ratti stimulated mesenteric lymph node cells, anti-S. ratti IgG(1) and intestinal rat mast cell protease II (RMCPII) production. We observed some small quantitative immunological differences between different infection regimes, in which the concentration of IL4, IL13, anti-S. ratti IgG(1) and IgG(2a) and RMCPII were affected. However, these differences were quantitatively relatively modest compared with the temporal dynamics of the anti-S. ratti immune response as a whole.  相似文献   

8.
9.
The consequences of prior and concurrent infection with two species of nematodes were studied in rats. Primary infection with Strongyloides ratti adversely affected the development of a secondary Trichinella spiralis infection. Both immediate and delayed challenge with T. spiralis, following the expulsion of the previous S. ratti infection, reduced the percentage of worm recovery of the former as well as their fecundities and lengths. It is suggested that nonspecific inflammation produced by one species, during the peak period of worm expulsion, was not responsible for the accelerated rate of expulsion of the other; instead a direct, specific cross-immunity was probably operative affecting the survival of the challenge species. The response elicited by previous experience of the intestinal phase was reciprocal, but there was evidence of an enhancing effect by the muscle larval stages of T. spiralis on S. ratti. Rats concurrently infected with both species expelled S. ratti more rapidly than T. spiralis. Possible mechanisms underlying the interaction between the two species are suggested and discussed.  相似文献   

10.
11.
12.
It is estimated that over one third of the world population is infected with helminths, Strongyloides ssp. accounting for approximately 30-100 million cases. As helminth infections often result in a modulation of the host's immune system, infected people may display impaired responses to concurrent infections and to third party antigens. Here, we employ the experimental system of murine Strongyloides ratti infection to investigate the impact of helminth infections on experimental vaccinations. We demonstrate that concurrent infection with S. ratti strongly affected the humoral response to a thymus dependent model antigen, whereby predominantly Th1 associated IgG2b production was suppressed. We provide evidence that this suppression was due to modulation of T helper cell and not B cell function as the responses to a thymus independent model antigen remained unchanged in S. ratti infected mice. Moreover, using an adoptive transfer system, we show that infection with S. ratti directly interfered with antigen-specific proliferation of T cell receptor transgenic CD4(+) T helper cells in vivo. Finally, using IL-10 deficient mice and mice that selectively lack T helper cell derived IL-10 we rule out a role for host-derived IL-10 in mediating the suppression of thymus dependent model antigen response in S. ratti infected mice.  相似文献   

13.
Experiments were carried out in vitro to investigate whether the sera of several animals as well as albumins and peptides might act as attractants for larvae of Strongyloides ratti. Samples of sera from several mammal species were dialysed and the aliquots were further centrifuged using ultrafiltration cartridges to remove any remaining small molecules. Additional test substances included commercially obtained ovalbumin, rat and bovine serum albumins, polypeptides such as peptone, tryptone and tryptose, amino nitrogens, monosaccharides, and reduced glutathione (triaminopeptide). Larvae were strongly attracted to the dialysed mammalian sera, which mainly consisted of serum albumin and globulins. Ov- and serum albumins, and polypeptides also acted as attractants. On the other hand, reduced glutathione, 16 kinds of amino acids and four kinds of monosaccharides did not attract this nematode.  相似文献   

14.
The large intestine of a rat has been neglected almost completely as a site of Strongyloides sp. infection. We reported that adult Strongyloides ratti remained in the large intestine for more than 80 days, producing more number of infective larvae than small intestine adults, and therefore hypothesized that parasitism in this site could be a survival strategy. In wild rats, however, no study has focused on large intestine infections of Strongyloides. The present study revealed that 32.4% of 68 wild rats, Rattus norvegicus, had the infection of S. ratti in the large intestine, with an average of 4.7 worms. These worms harbored normal eggs in the uterus. In a laboratory experiment with S. ratti and Wister rats, daily output of infective larvae by 4.7 females in the large intestine was estimated to be 4,638.4, suggesting that a few parasites could play a role in the parasite transmission. Five species of nematode found in the wild rats showed seasonality in infection intensity, with highest intensities in March-May. The number of S. ratti in the large intestine was also highest in these months.  相似文献   

15.
Eight days after mother rats were injected with 4000 infective larvae of Strongyloides ratti at different stages of lactation the numbers of adult worms in their intestines were uniformly low (less than 3% of the dose) compared with unmated controls (mean = 25%). Those in their litters varied from 12% on day 5 to a maximum of 47% on day 17 post partum. These data, which do not correlate with lactational performance, imply that parasite movements in lactating rats are controlled by qualitative, not quantitative, consequences of humoral events. The numbers of worms in litters are concluded to be the result of the interaction of dynamic determinants of larval routes in the mother and changes in the suitability of the neonatal gut as an environment for worm development. The timing of events leading to milk-borne infection is defined. Injected larvae were closely synchronized in their movements, which were completed in 36 h. Larvae experimentally diverted into the mother's tissues during her first lactation were not available for the infection of a second litter.  相似文献   

16.
Harvey SC  Viney ME 《Genetics》2001,158(4):1527-1533
The parasitic nematode Strongyloides ratti reproduces by both parthenogenesis and sexual reproduction, but its genetics are poorly understood. Cytological evidence suggests that sex determination is an XX/XO system. To investigate this genetically, we isolated a number of sex-linked DNA markers. One of these markers, Sr-mvP1, was shown to be single copy and present at a higher dose in free-living females than in free-living males. The inheritance of two alleles of Sr-mvP1 by RFLP analysis was consistent with XX female and XO male genotypes. Analysis of the results of sexual reproduction demonstrated that all progeny inherit the single paternal X chromosome and one of the two maternal X chromosomes. Therefore, all stages of the S. ratti life cycle, with the exception of the free-living males, are XX and genetically female. These findings are considered in relation to previous analyses of S. ratti and to other known sex determination systems.  相似文献   

17.
There were no differences in mean intestinal worm burdens 8 days after subcutaneous injection of 4000 infective larvae of Strongyloides ratti into rats in dioestrus, pro-oestrus, oestrus and metoestrus. Thus, changes in the hormonal environment of the migrating larvae dependent on the oestrous cycle did not alter the worms' destination or affect their potential for development. In particular, the results are prima facie evidence that prolactin is not, on its own, responsible for the re-orientation of larvae in the tissues of nursing mothers. Other sources of variability in experimental S. ratti infections are analysed and the 'exact dose' technique offered as a corrective for some procedural errors.  相似文献   

18.
Parasitic nematodes show levels of genetic diversity comparable to other taxa, but the functional consequences of this are not understood. Thus, a large body of theoretical work highlights the potential consequences of parasite genetic diversity for the epidemiology of parasite infections and its possible implications for the evolution of host and parasite populations. However, few relevant empirical data are available from parasites in general and none from parasitic nematodes in particular. Here, we test two hypotheses. First, that different parasitic nematode genotypes vary in life-history traits, such as survivorship and fecundity, which may cause variation in infection dynamics. Second, that different parasitic nematode genotypes interact within the host (either directly or via the host immune system) to increase the mean reproductive output of mixed-genotype infections compared with single-genotype infections. We test these hypotheses in laboratory infections using genetically homogeneous lines of Strongyloides ratti. We find that nematode genotypes do vary in their survivorship and fecundity and, consequently, in their dynamics of infection. However, we find little evidence of interactions between genotypes within hosts under a variety of trickle- and single-infected infection regimes.  相似文献   

19.
P A Wilson 《Parasitology》1979,79(1):29-38
Infective larvae of homogonic Strongyloides ratti grown in faecal culture with 32P or 75Se acquired a significant amount of radioactivity which was firmly attached to them. Heating removed most of the 32P but left 75Se in place. Subcutaneous injection of virgin and nursing mother rats with living and heat-killed radioactive larvae resulted in a pattern of labelling in the small intestine of injected animals and, in the case of 75Se, those of suckling pups, which can only be explained if labelled worms follow the natural migratory routes. The use of this tool in migratory studies is discussed, with precautions to allow for flaws in the technique.  相似文献   

20.
The objective of this study was to identify soluble protein antigens that would induce protective immunity against infective-stage larvae (L-3) of Strongyloides stercoralis in mice. Deoxycholate (DOC)-soluble proteins derived from L-3, adsorbed to aluminum hydroxide, induced protective immunity in BALB/c mice. The immunized mice generated parasite-specific IgG that could transfer passive immunity to na?ve animals. The protective antibodies bound to parasite antigens found in the muscles and nerve cords of the L-3. An IgG affinity chromatography column generated with IgG from the sera of DOC-immunized mice was used to purify specific larval antigens. Proteins were eluted from the affinity column with sizes of 80, 75, 61, 57, 43, and 32 kDa. This antigen pool stimulated both proliferation and IL-5 production by splenocytes recovered from mice immunized with live L-3. Vaccination of mice with the immunoaffinity-isolated antigens led to significant protective immunity, with 83% of challenge larvae killed. This study demonstrates that IgG-isolated proteins are candidate antigens for a vaccine against larval S. stercoralis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号