首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Effect of intraperitoneal administration (5 mmol/kg of body weight) of glucose- cysteine adduct (glc-cys) as a cysteine prodrug in rat tissues was studied. Cysteine levels in liver and kidney increased to 1.08 and 1.98mol per g or ml, respectively, at 2h after the administration. GSH levels did not change substantially. However, when glc-cys was injected to rats treated with diethyl maleate, a GSH-depleting agent, the decreased GSH levels were restored rapidly. The recoveries in liver and kidney were 72% at 1h and 66% at 2h, respectively, after glc-cys administration. Metabolism of glc-cys was assessed by urinary excretion of glc-cys, sulfate and taurine. Average excretion of glc-cys was 2.86mmol/kg/24h after glc-cys administration. Increased excretions of sulfate and taurine were 0.77 and 0.14mmol/kg/24h, respectively. Data show that, although glc-cys excretion was relatively rapid, glc-cys was effectively utilized for GSH synthesis in GSH-depleted tissues.  相似文献   

2.
Summary Effect ofN-acetyl-l-cysteine (NAC) administration on cysteine and glutathione (GSH) contents in rat liver and kidney was studied using intact and diethyl maleate (DEM)-treated rats and perfused rat liver. Cysteine contents increased rapidly, reaching peak at 10 min after intraperitoneal NAC administration. In liver mitochondria it increased slowly, reaching peak at 60 min. GSH content did not change significantly in these tissues. However, in liver and kidney depleted of GSH with DEM, NAC administration restored GSH contents in 60 and 120 min, respectively. Perfusion with 10 mM NAC resulted in 76% increase in liver cysteine content, but not in GSH content. Liver perfusion of DEM-injected rats with 10 mM NAC restored GSH content by 15%. Present findings indicate that NAC is an effective precursor of cysteine in the intact liver and kidney and in the perfused rat liver, and that NAC stimulated GSH synthesis in GSH-depleted tissues.  相似文献   

3.
4.
We examined the role of GSH in survival and cell death using GCS-2 cells that are deficient in glutamate cysteine ligase (gamma-glutamyl cysteine synthetase, gammaGCS), an enzyme essential for GSH synthesis. Cells maintained in 2.5 mM GSH have GSH levels that are approximately 2% of wild type and grow indefinitely; however, they express both pro- and anti-apoptotic Bcl-2 family members and have detectable levels of cytoplasmic cytochrome C. Withdrawal of GSH from the medium results in a fall in intracellular GSH to undetectable levels, decreased mitochondrial dehydrogenase activity, decreased anti-apoptotic factor RNAs, increased pro-apoptotic factor RNAs, additional cytochrome C release, and a fall in ATP levels; however, cells continue to grow for another 24h. At 48 h, these trends continue with the exception that mitochondrial membrane potential and ATP levels rise; DNA fragmentation begins at 48 h. Thus, severe reduction of GSH to 2% of wild type produces a metastable state compatible with survival, but complete absence of GSH triggers apoptosis.  相似文献   

5.
We previously reported that machine perfusion (MP) performed at 20 °C enhanced the preservation of steatotic rat livers. Here, we tested whether rat livers retrieved 30 min after cardiac arrest (NHBDs) were better protected by MP at 20 °C than with cold storage. We compared the recovery of livers from NHBDs with organs obtained from heart beating donors (HBDs) preserved by cold storage. MP technique: livers were perfused for 6 h with UW-G modified at 20 °C. Cold storage: livers were perfused in situ and preserved with UW solution at 4 °C for 6 h. Both MP and cold storage preserved livers were reperfused with Krebs-Heinselet buffer (2 h at 37 °C). AST and LDH release and mitochondrial glutamate dehydrogenase (GDH) levels were evaluated. Parameters assessed included: bile production and biliary enzymes; tissue ATP; reduced and oxidized glutathione (GSH/GSSG); protein–SH group concentration. Livers preserved by MP at 20 °C showed significantly lower hepatic damage at the end of reperfusion compared with cold storage. GDH release was significantly reduced and bile production, ATP levels, GSH/GSSG and protein–SH groups were higher in livers preserved by MP at 20 °C than with cold storage. The best preserved morphology and high glycogen content was obtained with livers submitted to MP at 20 °C. Liver recovery using MP at 20 °C was comparable to recovery with HBDs. MP at 20 °C improves cell survival and gives a better-quality of preservation for livers obtained from NHBDs and may provide a new method for the successful utilization of marginal livers.  相似文献   

6.

Background  

In the isolated liver of fed rats, a 10 mM ethanol perfusion rapidly induced a rapid 25% decrease in the total ATP content, the new steady state resulting from both synthesis and consumption. The in situ rate of mitochondrial ATP synthesis without activation of the respiration was increased by 27%, implying an increased energy demand. An attempt to identify the ethanol-induced ATP-consuming pathways was performed using 31P and 13C Nuclear Magnetic Resonance.  相似文献   

7.
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde to which humans are exposed in various situations. In the present study, the effects of sublethal doses of acrolein on nuclear factor kappaB (NF-kappaB) activation in A549 human lung adenocarcinoma cells were investigated. Immediately following a 30-min exposure to 45 fmol of acrolein/cell, glutathione (GSH) and DNA synthesis and NF-kappaB binding were reduced by more than 80%. All parameters returned to normal or supranormal levels by 8 h post-treatment. Pretreatment with acrolein completely blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of NF-kappaB. Cells treated for 1 h with 1 mM diethyl maleate (DEM) showed a 34 and 53% decrease in GSH and DNA synthesis, respectively. DEM also reduced NF-kappaB activation by 64% at 2 h post-treatment, with recovery to within 22% of control at 8 h. Both acrolein and DEM decreased NF-kappaB function approximately 50% at 2 h after treatment with TPA, as shown by a secreted alkaline phosphatase reporter assay. GSH returned to control levels by 8 h after DEM treatment, but proliferation remained significantly depressed for 24 h. Interestingly, DEM caused a profound decrease in NF-kappaB binding, even at doses as low as 0.125 mM that had little effect on GSH. Neither acrolein nor DEM had any effect on the levels of phosphorylated or nonphosphorylated inhibitor kappaB-alpha (IkappaB-alpha). Furthermore, acrolein decreased NF-kappaB activation in cells depleted of IkappaB-alpha by TPA stimulation in the presence of cycloheximide, demonstrating that the decrease in NF-kappaB activation was not the result of increased binding by the inhibitory protein. This conclusion was further supported by the finding that acrolein modified NF-kappaB in the cytosol prior to chemical dissociation from IkappaB with detergent. Together, these data support the conclusion that the inhibition of NF-kappaB activation by acrolein and DEM is IkappaB-independent. The mechanism appears to be related to direct modification of thiol groups in the NF-kappaB subunits.  相似文献   

8.
In isolated rat pancreatic islets maintained at a physiologic glucose concentration (5.6 mM) the effect of glucose on parameters which are known to be involved in the insulin secretion coupling such as NADPH, reduced glutathione (GSH), 86Rb+ efflux, and 45Ca++ net uptake were investigated. The insulinotropic effect of 16.7 mM glucose was decreased with the period of culturing during the first 14 days being significant after 2 days though in control experiments both protein content and ATP levels per islet were not affected and insulin content was only slightly decreased. Both NADPH and GSH decreased with time of culture. 86Rb+ efflux which is decreased by enhancing the glucose concentration from 3 to 5.6 mM in freshly isolated islets was not affected by culturing whatsoever, even not after 14 days of culture when there was no longer any insulin responsiveness to glucose. The 45Ca++ net uptake was decreased during culturing. The data indicate (1) that the diminished glucose-stimulated release of insulin during culturing is not due to cell loss or simple energy disturbances, (2) that more likely it is the result of a diminished 45Ca++ net uptake as a consequence of the inability of islet cells to maintain proper NADPH and GSH levels, and (3) that potassium (86Rb+) efflux may not be related to changes of NADPH and GSH.  相似文献   

9.
Glutamine (GLN) is a metabolic precursor for hexosamine synthesis and its inclusion in culture medium has been reported to improve cumulus expansion. Glutamine and cysteine share the same transport system. Excess external GLN may act as a competitive inhibitor for the uptake of cysteine and stimulate loss of cellular cysteine, interfering this with GSH synthesis. Experiments were designed to evaluate the effect of 1–3 mM GLN during in vitro maturation (IVM) on bovine-cumulus expansion, intracellular GSH levels in both oocytes and cumulus cells, and subsequent embryo development up to blastocyst stage. Also, GSH content was measured in 6- to 8-cell embryos and a possible relationship between cumulus expansion and GSH synthesis was studied. Intact cumulus cell-oocyte complexes were incubated for 24 hr and cumulus expansion was measured by a computerized image-digitizing system either before or after IVM. IVM/IVF bovine oocytes were cultured up to 6- to 8-cell stage embryos for assessment of GSH content or for 8 days up to blastocyst stage for embryo development. The measurement of total GSH content was performed by an enzymatic method in oocytes, cumulus cells and 6- to 8-cell embryos. The maximal expansion was achieved by addition of 2 mM GLN without affecting GSH levels, in both oocytes and cumulus cells. At 3 mM, the degree of cumulus expansion was lower and the GSH levels decreased. The addition of 2 mM GLN improves cleavage and blastocyst rates, whereas no differences were found between 0, 1, and 3 mM GLN. Moreover, the GSH content in 6- to 8-cell embryos was similar at any GLN concentrations. In order to study the relationship between GSH and cumulus expansion: 6-diazo-5-oxo-1-norleucine (DON), an inhibitor of hexosamine synthesis, or buthionine sulfoximide (BSO), an inhibitor of GSH synthesis, either alone or with GLN was added to IVM medium. GSH level was not affected by the presence of DON. However, the degree of cumulus expansion was reduced in the presence of BSO. In conclusion, bovine oocytes matured in the presence of 2 mM GLN improve their capacity for subsequent embryo development. Nevertheless, GSH level was altered when GLN was added to IVM medium at a high concentration with a reduction in the degree of cumulus expansion. This study provides evidence that optimal cumulus expansion in vitro is partially dependent on hexosamine production and intracellular GSH content. Mol. Reprod. Dev. 51:76–83, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Depletion of cellular GSH by diethyl maleate (DEM) potentiates CH2O toxicity in isolated rat hepatocytes and it was postulated that this increase in toxicity is due to the further decrease in GSH caused by CH2O in DEM-pretreated hepatocytes (1). The present investigation was conducted to investigate further the effects of CH2O, DEM, and acrolein (a compound which is structurally related to CH2O and DEM) on subcellular GSH pools and on protein sulfhydryl groups (PSH). CH2O caused a decrease in cytosolic GSH but had no effect on mitochondrial GSH either in previously untreated hepatocytes or in DEM-pretreated hepatocytes in which GSH was approximately 25% of control. DEM decreased both cytosolic and mitochondrial GSH but it did not produce toxicity. Neither CH2O (up to 7.5 mM) nor DEM (20 mM) decreased PSH. However, in cells pretreated with 1 mM DEM, CH2O (7.5 mM) decreased PSH and this effect preceded cell death. Acrolein decreased both cytosolic and mitochondrial GSH and it also decreased PSH significantly prior to causing cell death. CH2O and acrolein stimulated phosphorylase alpha activity, indicative of an increase in cytosolic free Ca2+, by a PSH-independent and PSH-dependent mechanism, respectively. These results suggest that the further depletion of cellular GSH by CH2O in DEM-pretreated cells is not due to the depletion of mitochondrial GSH. CH2O toxicity in DEM-pretreated cells is, however, correlated with depletion of PSH. The critical sulfhydryl protein(s) responsible for cell death remain to be more clearly defined.  相似文献   

11.
The effect of certain biochemical parameters on transendothelial fluid transport has been studied. Cellular ATP level and (Na+ + K+)-activated as well as Mg2+-activated ATPase activities were measured by ultramicrotechniques using individual rabbit corneal endothelium after they had been subjected to in vitro perfusion with solutions fully supplemented or deficient singly or severally in glucose, adenosine and glutathione (GSH). With the complete medium, the transport system operates in vitro for approx. 6 h. Deletion of glucose alone, glucose and adenosine or glucose, adenosine and GSH brings about a cessation of fluid transport after 3.5 h, 2 to 2.5 h and 0.5 to 1 h, respectively. A marked decrease (62%) of the endothelial ATP level, however, occurs only when all metabolites are omitted. The favorable effect of GSH on transport activity is attributable to its capacity to sustain cellular ATP rather than to protect the functionality of (Na+ + K+)-activated ATPase. Adenosine, in the presence of GSH, maintains normal ATP levels and, additionally, exerts a protective effect on Mg2+-activated ATPase and possibly also on (Na+ + K+)-activated ATPase.  相似文献   

12.
Diethylmaleate (DEM) decreases glutathione (GSH) levels in various organs by enzymatic conjugation with reduced GSH catalyzed by GSH transferase. We have examined levels of GSH, glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PD) in lungs of 200-250-g rats after intraperitoneal injection of 0.5 or 1 g DEM/kg body wt. The GSH levels are severely depressed at 2 and 4 h but have essentially recovered by 12 and 24 h after either dose of DEM. The GR and G6PD activities in the 1 g/kg group are depressed at 4 h to a lesser extent than the GSH levels and also return to normal by 12 and 24 h. These enzymes are not affected in the 0.5 g/kg group. To determine whether these transient decreases in GSH and related enzymes affected O2 tolerance, we exposed rats injected with DEM to greater than 98% O2 and found that halftime (t1/2) for survival was decreased in rats receiving both 0.5 and 1 g DEM/kg body wt when compared with untreated or saline-injected controls (t1/2 control, 74 h; 0.5 g DEM, 59 h; 1 g DEM, 53 h). No deaths occurred in air controls at 1 mg/kg DEM for up to 5 days. DEM, in itself, caused no morphological alteration of the lung. Thus a decrease in lung GSH and related enzymes, occurring by 4 h and reversed by 12 h, has a significant effect on the subsequent progression of lung pathology and indicates that early biochemical events occurring in lungs exposed to hyperoxia may be very important in determining the degree of longer-term damage to rat lungs.  相似文献   

13.
In this study, we used isolated rat hepatocytes to investigate the effect of nucleoside content of the preserved cells on the ability to synthesize glutathione (GSH) during the rewarming process. We cold-stored hepatocytes in University of Wisconsin (UW) solution (72 h, 0 degrees C, N(2)) without nucleosides and with the addition of 5 mM adenosine or 10 mM ATP. After 72 h of cold storage, we determined the GSH synthesis rate and the ATP content of the cells. We found a GSH synthesis rate similar to that of freshly isolated hepatocytes only in the group of cells cold-stored with 10 mM ATP. When we tested the cellular ATP concentrations, we found that controls and preserved cells with 10 mM ATP showed a similar value of ATP during the rewarming step. Our results suggested that the incorporation of ATP in the UW solution increased the ATP content and the rate of GSH synthesis of cold-stored hepatocytes during rewarming.  相似文献   

14.
To investigate whether the action potential duration (APD) or resting tension was dependent on global ATP content, and whether they were preferentially dependent on glycolytic ATP, APD and resting tension were measured under various metabolic inhibition with corresponding measurement of ATP content in guinea pig ventricular muscles. Oxidative phosphorylation was inhibited by either hypoxic perfusion, the perfusion of sodium cyanide, or 2,4-dinitrophenol. Glycolysis was blocked by the perfusion of iodoacetic acid, and hypoxia with variable glycolytic activities was achieved by hypoxic perfusion in the presence of glucose (5, 10, and 50 mM). APD began to decrease when ATP content decreased to less than 3 mM/kg w.w. from the control level of 4.35 mM/kg w.w. APD shortened significantly and resting tension increased steeply, when ATP content decreased below 1 mM/kg w.w. The dependence of APD and the increase in resting tension on ATP content was not affected by the mode of metabolic block, that is, the inhibition of glycolysis and/or oxidative phosphorylation. Though other factors can affect APD and resting tension, we found no evidence of functional ATP compartmentation, with respect to APD and the increase in resting tension during metabolic inhibition.  相似文献   

15.
Glycolytic and oxidative metabolism in relation to retinal function   总被引:11,自引:1,他引:10       下载免费PDF全文
Measurements of lactate production and ATP concentration in superfused rat retinas were compared with extracellular photoreceptor potentials (Fast PIII). The effect of glucose concentration, oxygen tension, metabolic inhibition, and light were studied. Optimal conditions were achieved with 5-20 mM glucose and oxygen. The isolated retina had a high rate of lactate production and maintained the ATP content of a freshly excised retina, and Fast PIII potentials were similar to in vivo recordings. Small (less than 10%) decreases in aerobic and anaerobic lactate production were observed after illumination of dark-adapted retinas. There were no significant differences in ATP content in dark- and light-adapted retinas. In glucose-free medium, lactate production ceased, and the amplitude of Fast PIII and the level of ATP declined, but the rates of decline were slower in oxygen than in nitrogen. ATP levels were reduced and the amplitude of Fast PIII decreased when respiration was inhibited, and these changes were dependent on glucose concentration. Neither glycolysis alone nor Krebs cycle activity alone maintained the superfused rat retina at an optimal level. Retinal lactate production and utilization of ATP were inhibited by ouabain. Mannose but not galactose or fructose produced lactate and maintained ATP content and Fast PIII. Iodoacetate blocked lactate production and Fast PIII and depleted the retina of ATP. Pyruvate, lactate, and glutamine maintained ATP content and Fast PIII reasonably well (greater than 50%) in the absence of glucose, even in the presence of iodoacetate. addition of glucose, mannose, or 2-deoxyglucose to medium containing pyruvate and iodoacetate abolished Fast PIII and depleted the retina of its ATP. It is suggested that the deleterious effects of these three sugars depend upon their cellular uptake and phosphorylation during the blockade of glycolysis by iodoacetate.  相似文献   

16.
The ability of the mitochondria-targeted plastoquinone derivative 10-(6′-plastoquinonyl)decyl triphenylphosphonium (SkQ1) to decrease ischemia-reperfusion injury in isolated liver during hypothermic storage (HS) was studied. Rat liver was stored for 24 h at 4°C without or in the presence of 1 μM SkQ1 with following reperfusion for 60 min at 37°C. The presence in the storage medium of SkQ1 significantly decreased spontaneous production of reactive oxygen species and intensity of lipid peroxidation in the liver during HS and reperfusion. The GSH level after HS in solution with SkQ1 was reliably higher, but reperfusion leveled this effect. At all stages of experiment the presence of SkQ1 did not prevent the decrease of antioxidant enzyme activities such as catalase, GSH peroxidase, GSH reductase, and glucose-6-phosphate dehydrogenase. The addition of SkQ1 to the storage medium improved energetic function of the liver, as was revealed in increased respiratory control index of mitochondria and ATP level. SkQ1 exhibited positive effect on the liver secretory function and morphology after HS as revealed in enhanced bile flow rate during reperfusion and partial recovery of organ architectonics and state of liver sinusoids and hepatocytes. The data point to promising application of mitochondria-targeted antioxidants for correction of the ischemia-reperfusion injury of isolated liver during long-term cold storage before transplantation.  相似文献   

17.
It is well known that lipid peroxidation may be initiated or exaggerated by conditions leading to hepatic GSH depletion or altered GSH/GSSG ratio. In our study we evaluated the effects of GSH administration on hepatic, bile and plasma GSH, GSSG and MDA in rats depleted of the tripeptide by a prolonged. fasting. An exteriorized biliary-duodenal fistula was established and GSH or saline solution was administered i.p. for a period of 6h. Rats treated with GSH exhibited an increased GSH and decreased GSSG biliary excretion. Whereas in control rats an opposite pattern was observed, namely enhanced GSSG and decreased GSH biliary excretion. While hepatic GSH and GSSG concentrations were comparable in the two groups, a significant increase in liver and plasma MDA production was found in controls compared to GSH treated rats. Our data suggest a protective role of GSH against the production of lipoperoxidation as evidenced by the decrease of hepatic, biliary and plasma MDA levels and by a decreased percentage of biliary GSSG. In addition, the significant increase of biliary GSH excretion, observed in rats treated with GSH compared to controls, may be due to an increased supply of the tripeptide which is known to be preferentially excreted into bile in the reduced form.  相似文献   

18.
The metabolism and toxicity of formaldehyde (CH2O) in isolated rat hepatocytes was found to be dependent upon the intracellular concentration of glutathione (GSH). Using hepatocytes depleted of GSH by treatment with diethyl maleate (DEM), the rate of CH2O (5.0 mM) disappearance was significantly decreased. Formaldehyde decreased the concentration of GSH in hepatocytes, probably by the extrusion of the CH2O-GSH adduct, S-hydroxymethylglutathione. Formaldehyde toxicity was potentiated in cells pretreated with 1.0 mM DEM as measured by the loss of membrane integrity (NADH stimulation of lactate dehydrogenase (LDH) activity) and an increase in lipid peroxidation (formation of thiobarbituric acid-reactive compounds). This potentiation of toxicity was both CH2O concentration-dependent and time-dependent. There was an excellent correlation between the increase in lipid peroxidation and the decrease in cell viability. L-Methionine (1.0 mM) both protected the cells from toxicity caused by the combination of 8.0 mM CH2O and 1.0 mM DEM and increased the cellular GSH concentration. The antioxidants, ascorbate, butylated hydroxytoluene (BHT) and alpha-tocopherol (10, 25 and 125 microM), all exhibited dose-dependent protection against toxicity produced by 8.0 mM CH2O and 1.0 mM DEM. At toxic concentrations of CH2O (10.0-13.0 mM), administered by itself, lipid peroxidation did not increase concomitantly with the decrease in cell viability and the addition of antioxidants (125 microM) did not influence CH2O toxicity. These results suggest that CH2O toxicity in GSH-depleted hepatocytes may be mediated by free radicals as a result of the effect of CH2O on a critical cellular pool of GSH. However, cells with normal concentrations of GSH are damaged by CH2O by a different mechanism.  相似文献   

19.
The aim of the study was to evaluate the effect of acetaminophen (APAP) and/or trichloroethylene (TRI) on the liver cytochrome P450-dependent monooxygenase system, CYP2E1 and CYP1A2 (two important P450 isoforms), and liver glutathione (GSH) content in rats. Rats were given three different doses of APAP (250, 500 and 1000 mg/kg b...) and then the above-mentioned parameters were measured for 48 h. The lowest APAP dose produced small changes in the cytochrome P450 content of liver. At 500 mg/kg APAP increased the cytochrome P450 content to 230% of the control. The inductive effect was seen at 1000 mg/kg dose but at 24 h and later. NADPH-cytochrome P450 reductase activity was the highest after the lowest dose of APAP, while after the highest dose it was equal to the control value. TRI increased both the cytochrome P450 content and the NADPH-cytochrome P450 reductase activity. When TRI was combined with APAP, both these parameters increased in the first hours of observation, but they returned to the control values at 24 h. When APAP was given at 250 mg/kg, GSH levels decreased to 55% of the control at 8 h and returned to the control values at 24 h. The higher doses of APAP decreased GSH levels more than the lowest dose, but after 24 h GSH levels did not differ from those of the control. When TRI was given at 250 mg/kg, the GSH levels decreased to 68% of the control at 2 h and then they increased gradually and tended to exceed the control values at 48 h. The effect of TRI combined with APAP on the level of GSH was virtually the same as that of APAP alone given at 500 mg/kg.  相似文献   

20.
The response of fatty liver to stress conditions (t-butyl hydroperoxide [t-BH] or 36 h of fasting) was investigated by assessing intracellular glutathione (GSH) compartmentation and redox status, GSH peroxidase (GSH-Px) and reductase (GSSG-Rx) activities, lipid peroxidation (TBARs) and serum ALT levels in rats on a choline-deficient diet. Baseline cytosolic GSH was similar between fatty and normal livers, while the mitochondrial GSH content was significantly lower in fatty livers. With the except of cytosolic GSH-Px activity, steatosis was associated with significantly higher GSH-related enzymes activities. Liver TBARs and serum ALT levels were also higher. Administration of t-BH significantly decreased the concentration of cytosolic GSH, increased GSSG levels in all the compartments, and increased TBARs levels in cytosol and mitochondria and serum ALT; all these alterations were more marked in rats with fatty liver. Fasting decreased the concentration of GSH in all the compartments both in normal and fatty livers, increased GSSG, TBARs and ALT levels, and decreased by 50% the activities of GSH-related enzymes. Administration of diethylmaleimide (DEM) resulted in cytosolic and microsomal GSH pool depletion. Administration of t-BH to DEM-treated rats further affected cytosolic GSH and enhanced ALT levels, whereas the application of fasting to GSH depleted rats mainly altered the mitochondrial GSH system, especially in fatty livers. This study shows that fatty livers have a weak compensation of hepatic GSH regulation, which fails under stress conditions, thus increasing the fatty liver's susceptibility to oxidative damage. Differences emerge among subcellular compartments which point to differential adaptation of these organelles to fatty degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号