首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L Min  R Yang  X Wang  B Wang 《Heredity》2011,106(1):124-133
The dissection of the genetic architecture of quantitative traits, including the number and locations of quantitative trait loci (QTL) and their main and epistatic effects, has been an important topic in current QTL mapping. We extend the Bayesian model selection framework for mapping multiple epistatic QTL affecting continuous traits to dynamic traits in experimental crosses. The extension inherits the efficiency of Bayesian model selection and the flexibility of the Legendre polynomial model fitting to the change in genetic and environmental effects with time. We illustrate the proposed method by simultaneously detecting the main and epistatic QTLs for the growth of leaf age in a doubled-haploid population of rice. The behavior and performance of the method are also shown by computer simulation experiments. The results show that our method can more quickly identify interacting QTLs for dynamic traits in the models with many numbers of genetic effects, enhancing our understanding of genetic architecture for dynamic traits. Our proposed method can be treated as a general form of mapping QTL for continuous quantitative traits, being easier to extend to multiple traits and to a single trait with repeat records.  相似文献   

2.
The identification of imprinted genes is becoming a standard procedure in searching for quantitative trait loci (QTL) underlying complex traits. When a developmental characteristic such as growth or drug response is observed at multiple time points, understanding the dynamics of gene function governing the underlying feature should provide more biological information regarding the genetic control of an organism. Recognizing that differential imprinting can be development-specific, mapping imprinted genes considering the dynamic imprinting effect can provide additional biological insights into the epigenetic control of a complex trait. In this study, we proposed a Bayesian imprinted QTL (iQTL) mapping framework considering the dynamics of imprinting effects and model multiple iQTLs with an efficient Bayesian model selection procedure. The method overcomes the limitation of likelihood-based mapping procedure, and can simultaneously identify multiple iQTLs with different gene action modes across the whole genome with high computational efficiency. An inference procedure using Bayes factors to distinguish different imprinting patterns of iQTL was proposed. Monte Carlo simulations were conducted to evaluate the performance of the method. The utility of the approach was illustrated through an analysis of a body weight growth data set in an F(2) family derived from LG/J and SM/J mouse stains. The proposed Bayesian mapping method provides an efficient and computationally feasible framework for genome-wide multiple iQTL inference with complex developmental traits.  相似文献   

3.
Without consideration of other linked QTLs responsible for dynamic trait, original functional mapping based on a single QTL model is not optimal for analyzing multiple dynamic trait loci. Despite that composite functional mapping incorporates the effects of genetic background outside the tested QTL in mapping model, the arbitrary choice of background markers also impact on the power of QTL detection. In this study, we proposed Bayesian functional mapping strategy that can simultaneously identify multiple QTL controlling developmental patterns of dynamic traits over the genome. Our proposed method fits the change of each QTL effect with the time by Legendre polynomial and takes the residual covariance structure into account using the first autoregressive equation. Also, Bayesian shrinkage estimation was employed to estimate the model parameters. Especially, we specify the gamma distribution as the prior for the first-order auto-regressive coefficient, which will guarantee the convergence of Bayesian sampling. Simulations showed that the proposed method could accurately estimate the QTL parameters and had a greater statistical power of QTL detection than the composite functional mapping. A real data analysis of leaf age growth in rice is used for the demonstration of our method. It shows that our Bayesian functional mapping can detect more QTLs as compared to composite functional mapping.  相似文献   

4.
Lide Han  Shizhong Xu 《Genetica》2010,138(9-10):1099-1109
The identity-by-descent (IBD) based variance component analysis is an important method for mapping quantitative trait loci (QTL) in outbred populations. The interval-mapping approach and various modified versions of it may have limited use in evaluating the genetic variances of the entire genome because they require evaluation of multiple models and model selection. In this study, we developed a multiple variance component model for genome-wide evaluation using both the maximum likelihood (ML) method and the MCMC implemented Bayesian method. We placed one QTL in every few cM on the entire genome and estimated the QTL variances and positions simultaneously in a single model. Genomic regions that have no QTL usually showed no evidence of QTL while regions with large QTL always showed strong evidence of QTL. While the Bayesian method produced the optimal result, the ML method is computationally more efficient than the Bayesian method. Simulation experiments were conducted to demonstrate the efficacy of the new methods.  相似文献   

5.

Background

Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles depending on their parental origins, has been widely observed in nature. It has been shown recently that the epigenetic modification of an imprinted gene can be detected through a genetic mapping approach. Such an approach is developed based on traditional quantitative trait loci (QTL) mapping focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals play an important role in controlling embryonic growth and post-natal development. For a developmental character such as growth, current approach is less efficient in dissecting the dynamic genetic effect of imprinted genes during individual ontology.

Results

Functional mapping has been emerging as a powerful framework for mapping quantitative trait loci underlying complex traits showing developmental characteristics. To understand the genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the functional mapping approach with genomic imprinting. We demonstrate the approach through mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical behavior of the approach is shown through simulation studies, in which the parameters can be estimated with reasonable precision under different simulation scenarios. The utility of the approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse body weight.

Conclusion

The functional iQTL mapping approach developed here provides a quantitative and testable framework for assessing the interplay between imprinted genes and a developmental process, and will have important implications for elucidating the genetic architecture of imprinted traits.  相似文献   

6.
MOTIVATION: In most quantitative trait locus (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection and lead to detection of spurious QTLs. To improve the robustness of QTL mapping methods, we replaced the normal distribution for residuals in multiple interacting QTL models with the normal/independent distributions that are a class of symmetric and long-tailed distributions and are able to accommodate residual outliers. Subsequently, we developed a Bayesian robust analysis strategy for dissecting genetic architecture of quantitative traits and for mapping genome-wide interacting QTLs in line crosses. RESULTS: Through computer simulations, we showed that our strategy had a similar power for QTL detection compared with traditional methods assuming normal-distributed traits, but had a substantially increased power for non-normal phenotypes. When this strategy was applied to a group of traits associated with physical/chemical characteristics and quality in rice, more main and epistatic QTLs were detected than traditional Bayesian model analyses under the normal assumption.  相似文献   

7.
In most quantitative trait loci (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection, leading to detection of false positive QTL. To improve the robustness of QTL mapping methods, we replace the normal distribution assumption for residuals in a multiple QTL model with a Student-t distribution that is able to accommodate residual outliers. A Robust Bayesian mapping strategy is proposed on the basis of the Bayesian shrinkage analysis for QTL effects. The simulations show that Robust Bayesian mapping approach can substantially increase the power of QTL detection when the normality assumption does not hold and applying it to data already normally distributed does not influence the result. The proposed QTL mapping method is applied to mapping QTL for the traits associated with physics–chemical characters and quality in rice. Similarly to the simulation study in the real data case the robust approach was able to detect additional QTLs when compared to the traditional approach. The program to implement the method is available on request from the first or the corresponding author. Xin Wang and Zhongze Piao contributed equally to this study.  相似文献   

8.
A mathematical approach was developed to model and optimize selection on multiple known quantitative trait loci (QTL) and polygenic estimated breeding values in order to maximize a weighted sum of responses to selection over multiple generations. The model allows for linkage between QTL with multiple alleles and arbitrary genetic effects, including dominance, epistasis, and gametic imprinting. Gametic phase disequilibrium between the QTL and between the QTL and polygenes is modeled but polygenic variance is assumed constant. Breeding programs with discrete generations, differential selection of males and females and random mating of selected parents are modeled. Polygenic EBV obtained from best linear unbiased prediction models can be accommodated. The problem was formulated as a multiple-stage optimal control problem and an iterative approach was developed for its solution. The method can be used to develop and evaluate optimal strategies for selection on multiple QTL for a wide range of situations and genetic models.  相似文献   

9.
One way to use a crop germplasm collection directly to map QTLs without using line-crossing experiments is the whole genome association mapping. A major problem with association mapping is the presence of population structure, which can lead to both false positives and failure to detect genuine associations (i.e., false negatives). Particularly in highly selfing species such as Asian cultivated rice, high levels of population structure are expected and therefore the efficiency of association mapping remains almost unknown. Here, we propose an approach that combines a Bayesian method for mapping multiple QTLs with a regression method that directly incorporates estimates of population structure. That is, the effects due to both multiple QTLs and population structure were included in our statistical model. We evaluated the efficiency of our approach in simulated- and real-trait analyses of a rice germplasm collection. Simulation analyses based on real marker data showed that our model could suppress both false-positive and false-negative rates and the error of estimation of genetic effects over single QTL models, indicating that our model has statistically desirable attributes over single QTL models. As real traits, we analyzed the size and shape of milled rice grains and found significant markers that may be linked to QTLs reported previously. Association mapping should have good prospects in highly selfing species such as rice if proper methods are adopted. Our approach will be useful for the whole genome association mapping of various selfing crop species.  相似文献   

10.
S. Xu  W. R. Atchley 《Genetics》1995,141(3):1189-1197
Mapping quantitative trait loci in outbred populations is important because many populations of organisms are noninbred. Unfortunately, information about the genetic architecture of the trait may not be available in outbred populations. Thus, the allelic effects of genes can not be estimated with ease. In addition, under linkage equilibrium, marker genotypes provide no information about the genotype of a QTL (our terminology for a single quantitative trait locus is QTL while multiple loci are referred to as QTLs). To circumvent this problem, an interval mapping procedure based on a random model approach is described. Under a random model, instead of estimating the effects, segregating variances of QTLs are estimated by a maximum likelihood method. Estimation of the variance component of a QTL depends on the proportion of genes identical-by-descent (IBD) shared by relatives at the locus, which is predicted by the IBD of two markers flanking the QTL. The marker IBD shared by two relatives are inferred from the observed marker genotypes. The procedure offers an advantage over the regression interval mapping in terms of high power and small estimation errors and provides flexibility for large sibships, irregular pedigree relationships and incorporation of common environmental and fixed effects.  相似文献   

11.
Statistical methods to map quantitative trait loci (QTL) in outbred populations are reviewed, extensions and applications to human and plant genetic data are indicated, and areas for further research are identified. Simple and computationally inexpensive methods include (multiple) linear regression of phenotype on marker genotypes and regression of squared phenotypic differences among relative pairs on estimated proportions of identity-by-descent at a locus. These methods are less suited for genetic parameter estimation in outbred populations but allow the determination of test statistic distributions via simulation or data permutation; however, further inferences including confidence intervals of QTL location require the use of Monte Carlo or bootstrap sampling techniques. A method which is intermediate in computational requirements is residual maximum likelihood (REML) with a covariance matrix of random QTL effects conditional on information from multiple linked markers. Testing for the number of QTLs on a chromosome is difficult in a classical framework. The computationally most demanding methods are maximum likelihood and Bayesian analysis, which take account of the distribution of multilocus marker-QTL genotypes on a pedigree and permit investigators to fit different models of variation at the QTL. The Bayesian analysis includes the number of QTLs on a chromosome as an unknown.  相似文献   

12.
A Huang  S Xu  X Cai 《Heredity》2015,114(1):107-115
In multiple quantitative trait locus (QTL) mapping, a high-dimensional sparse regression model is usually employed to account for possible multiple linked QTLs. The QTL model may include closely linked and thus highly correlated genetic markers, especially when high-density marker maps are used in QTL mapping because of the advancement in sequencing technology. Although existing algorithms, such as Lasso, empirical Bayesian Lasso (EBlasso) and elastic net (EN) are available to infer such QTL models, more powerful methods are highly desirable to detect more QTLs in the presence of correlated QTLs. We developed a novel empirical Bayesian EN (EBEN) algorithm for multiple QTL mapping that inherits the efficiency of our previously developed EBlasso algorithm. Simulation results demonstrated that EBEN provided higher power of detection and almost the same false discovery rate compared with EN and EBlasso. Particularly, EBEN can identify correlated QTLs that the other two algorithms may fail to identify. When analyzing a real dataset, EBEN detected more effects than EN and EBlasso. EBEN provides a useful tool for inferring high-dimensional sparse model in multiple QTL mapping and other applications. An R software package ‘EBEN'' implementing the EBEN algorithm is available on the Comprehensive R Archive Network (CRAN).  相似文献   

13.
Li Y  Coelho CM  Liu T  Wu S  Wu J  Zeng Y  Li Y  Hunter B  Dante RA  Larkins BA  Wu R 《PloS one》2008,3(9):e3131
Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants.  相似文献   

14.
The successful implementation of Bayesian shrinkage analysis of high-dimensional regression models, as often encountered in quantitative trait locus (QTL) mapping, is contingent upon the choice of suitable sparsity-inducing priors. In practice, the shape (that is, the rate of tail decay) of such priors is typically preset, with no regard for the range of plausible alternatives and the fact that the most appropriate shape may depend on the data at hand. This study is presumably the first attempt to tackle this oversight through the shape-adaptive shrinkage prior (SASP) approach, with a focus on the mapping of QTLs in experimental crosses. Simulation results showed that the separation between genuine QTL effects and spurious ones can be made clearer using the SASP-based approach as compared with existing competitors. This feature makes our new method a promising approach to QTL mapping, where good separation is the ultimate goal. We also discuss a re-estimation procedure intended to improve the accuracy of the estimated genetic effects of detected QTLs with regard to shrinkage-induced bias, which may be particularly important in large-scale models with collinear predictors. The re-estimation procedure is relevant to any shrinkage method, and is potentially valuable for many scientific disciplines such as bioinformatics and quantitative genetics, where oversaturated models are booming.  相似文献   

15.
QTL-based evidence for the role of epistasis in evolution   总被引:1,自引:0,他引:1  
  相似文献   

16.
Estimating polygenic effects using markers of the entire genome   总被引:26,自引:0,他引:26  
Xu S 《Genetics》2003,163(2):789-801
Molecular markers have been used to map quantitative trait loci. However, they are rarely used to evaluate effects of chromosome segments of the entire genome. The original interval-mapping approach and various modified versions of it may have limited use in evaluating the genetic effects of the entire genome because they require evaluation of multiple models and model selection. Here we present a Bayesian regression method to simultaneously estimate genetic effects associated with markers of the entire genome. With the Bayesian method, we were able to handle situations in which the number of effects is even larger than the number of observations. The key to the success is that we allow each marker effect to have its own variance parameter, which in turn has its own prior distribution so that the variance can be estimated from the data. Under this hierarchical model, we were able to handle a large number of markers and most of the markers may have negligible effects. As a result, it is possible to evaluate the distribution of the marker effects. Using data from the North American Barley Genome Mapping Project in double-haploid barley, we found that the distribution of gene effects follows closely an L-shaped Gamma distribution, which is in contrast to the bell-shaped Gamma distribution when the gene effects were estimated from interval mapping. In addition, we show that the Bayesian method serves as an alternative or even better QTL mapping method because it produces clearer signals for QTL. Similar results were found from simulated data sets of F(2) and backcross (BC) families.  相似文献   

17.
To comprehensively investigate the genetic architecture of growth and obesity, we performed Bayesian analyses of multiple epistatic quantitative trait locus (QTL) models for body weights at five ages (12 days, 3, 6, 9 and 12 weeks) and body composition traits (weights of two fat pads and five organs) in mice produced from a cross of the F1 between M16i (selected for rapid growth rate) and CAST/Ei (wild-derived strain of small and lean mice) back to M16i. Bayesian model selection revealed a temporally regulated network of multiple QTL for body weight, involving both strong main effects and epistatic effects. No QTL had strong support for both early and late growth, although overlapping combinations of main and epistatic effects were observed at adjacent ages. Most main effects and epistatic interactions had an opposite effect on early and late growth. The contribution of epistasis was more pronounced for body weights at older ages. Body composition traits were also influenced by an interacting network of multiple QTLs. Several main and epistatic effects were shared by the body composition and body weight traits, suggesting that pleiotropy plays an important role in growth and obesity.  相似文献   

18.
The problem of locating quantitative trait loci (QTL) for experimental populations can be approached by multiple regression analysis. In this context variable selection using a modification of the Bayesian Information Criterion (mBIC) has been well established in the past. In this article a memetic algorithm (MA) is introduced to find the model which minimizes the selection criterion. Apart from mBIC also a second modification (mBIC2) is considered, which has the property of controlling the false discovery rate. Given the Bayesian nature of our selection criteria, we are not only interested in finding the best model, but also in computing marker posterior probabilities using all models visited by MA. In a simulation study MA (with mBIC and mBIC2) is compared with a parallel genetic algorithm (PGA) which has been previously suggested for QTL mapping. It turns out that MA in combination with mBIC2 performs best, where determining QTL positions based on marker posterior probabilities yields even better results than using the best model selected by MA. Finally we consider a real data set from the literature and show that MA can also be extended to multiple interval mapping, which potentially increases the precision with which the exact location of QTLs can be estimated.  相似文献   

19.
A common difficulty in mapping quantitative trait loci (QTLs) is that QTL effects may show environment specificity and thus differ across environments. Furthermore, quantitative traits are likely to be influenced by multiple QTLs or genes having different effect sizes. There is currently a need for efficient mapping strategies to account for both multiple QTLs and marker-by-environment interactions. Thus, the objective of our study was to develop a Bayesian multi-locus multi-environmental method of QTL analysis. This strategy is compared to (1) Bayesian multi-locus mapping, where each environment is analysed separately, (2) Restricted Maximum Likelihood (REML) single-locus method using a mixed hierarchical model, and (3) REML forward selection applying a mixed hierarchical model. For this study, we used data on multi-environmental field trials of 301 BC2DH lines derived from a cross between the spring barley elite cultivar Scarlett and the wild donor ISR42-8 from Israel. The lines were genotyped by 98 SSR markers and measured for the agronomic traits “ears per m2,” “days until heading,” “plant height,” “thousand grain weight,” and “grain yield”. Additionally, a simulation study was performed to verify the QTL results obtained in the spring barley population. In general, the results of Bayesian QTL mapping are in accordance with REML methods. In this study, Bayesian multi-locus multi-environmental analysis is a valuable method that is particularly suitable if lines are cultivated in multi-environmental field trials. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
A Bayesian approach to the statistical mapping of Quantitative Trait Loci (QTLs) using single markers was implemented via Markov Chain Monte Carlo (MCMC) algorithms for parameter estimation and hypothesis testing. Parameters were estimated by marginal posterior means computed with a Gibbs sampler with data augmentation. Variables sampled included the augmented data (marker-QTL genotypes, polygenic effects), the event of linkage or nonlinkage, and the parameters (allele frequencies, QTL substitution effect, recombination rate, polygenic and residual variances). The analysis was evaluated empirically via application to simulated granddaughter designs consisting of 2000 sons, 20 related sires and their ancestors. Results obtained in this study and preliminary work on multiple linked markers and multiple QTLs support the usefulness of the Bayesian method for the statistical mapping of QTLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号