首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cooperation is rife in the microbial world, yet our best current theories of the evolution of cooperation were developed with multicellular animals in mind. Hamilton’s theory of inclusive fitness is an important case in point: applying the theory in a microbial setting is far from straightforward, as social evolution in microbes has a number of distinctive features that the theory was never intended to capture. In this article, I focus on the conceptual challenges posed by the project of extending Hamilton’s theory to accommodate the effects of gene mobility. I begin by outlining the basics of the theory of inclusive fitness, emphasizing the role that the concept of relatedness is intended to play. I then provide a brief history of this concept, showing how, over the past fifty years, it has departed from the intuitive notion of genealogical kinship to encompass a range of generalized measures of genetic similarity. I proceed to argue that gene mobility forces a further revision of the concept. The reason in short is that, when the genes implicated in producing social behaviour are mobile, we cannot talk of an organism’s genotype simpliciter; we can talk only of an organism’s genotype at a particular stage in its life cycle. We must therefore ask: with respect to which stage(s) in the life cycle should relatedness be evaluated? For instance: is it genetic similarity at the time of social interaction that matters to the evolution of social behaviour, or is it genetic similarity at the time of reproduction? I argue that, strictly speaking, it is neither of these: what really matters to the evolution of social behaviour is diachronic genetic similarity between the producers of fitness benefits at the time they produce them and the recipients of those benefits at the end of their life-cycle. I close by discussing the implications of this result. The main payoff is that it makes room for a possible new mechanism for the evolution of altruism in microbes that does not require correlated interaction among bearers of the genes for altruism. The importance of this mechanism in nature remains an open empirical question.  相似文献   

2.
Hamilton's theory of kin selection is one of the most important advances in evolutionary biology since Darwin. Central to the kin-selection theory is the concept of inclusive fitness. However, despite the importance of inclusive fitness in evolutionary theory, empirical estimation of inclusive fitness has remained an elusive task. Using the concept of individual fitness, I present a method for estimating inclusive fitness and its components for diploid organisms with age-structured life histories. The method presented here: (i) allows empirical estimation of inclusive fitness from life-history data; (ii) simultaneously considers all components of fitness, including timing and magnitude of reproduction; (iii) is consistent with Hamilton's definition of inclusive fitness; and (iv) adequately addresses shortcomings of existing methods of estimating inclusive fitness. I also demonstrate the application of this new method for testing Hamilton's rule.  相似文献   

3.
Inclusive fitness is a concept widely utilized by social biologists as the quantity organisms appear designed to maximize. However, inclusive fitness theory has long been criticized on the (uncontested) grounds that other quantities, such as offspring number, predict gene frequency changes accurately in a wider range of mathematical models. Here, we articulate a set of modeling assumptions that extend the range of scenarios in which inclusive fitness can be applied. We reanalyze recent formal analyses that searched for, but did not find, inclusive fitness maximization. We show (a) that previous models have not used Hamilton''s definition of inclusive fitness, (b) a reinterpretation of Hamilton''s definition that makes it usable in this context, and (c) that under the assumption of probabilistic mixing of phenotypes, inclusive fitness is indeed maximized in these models. We also show how to understand mathematically, and at an individual level, the definition of inclusive fitness, in an explicit population genetic model in which exact additivity is not assumed. We hope that in articulating these modeling assumptions and providing formal support for inclusive fitness maximization, we help bridge the gap between empiricists and theoreticians, which in some ways has been widening, demonstrating to mathematicians why biologists are content to use inclusive fitness, and offering one way to utilize inclusive fitness in general models of social behavior.  相似文献   

4.
I argue that Grafen’s formal darwinism project could profitably incorporate a gene’s-eye view, as informed by the major transitions framework. In this, instead of the individual being assumed to maximise its inclusive fitness, genes are assumed to maximise their inclusive fitness. Maximisation of fitness at the individual level is not a straightforward concept because the major transitions framework shows that there are several kinds of biological individual. In addition, individuals have a definable fitness, exhibit individual-level adaptations and arise in a major transition, only to the extent that the inclusive-fitness interests of genes within them coincide. Therefore, as others have suggested, the fundamental level at which fitness is maximised is the gene level. Previous reconciliations of the concepts of gene-level fitness and individual-level fitness implicitly recognise this point. Adaptations always maximise the fitness of their causative genes, but may be simple or complex. Simple adaptations may be controlled by single genes and be maladaptive at higher levels, whereas complex adaptations are controlled by multiple genes and rely on those genes having coinciding fitness interests at a higher level, for a given trait.  相似文献   

5.
Inclusive fitness theory, summarised in Hamilton's rule, is a dominant explanation for the evolution of social behaviour. A parallel thread of evolutionary theory holds that selection between groups is also a candidate explanation for social evolution. The mathematical equivalence of these two approaches has long been known. Several recent papers, however, have objected that inclusive fitness theory is unable to deal with strong selection or with non-additive fitness effects, and concluded that the group selection framework is more general, or even that the two are not equivalent after all. Yet, these same problems have already been identified and resolved in the literature. Here, I survey these contemporary objections, and examine them in the light of current understanding of inclusive fitness theory.  相似文献   

6.
The validity and value of inclusive fitness theory   总被引:1,自引:0,他引:1  
Social evolution is a central topic in evolutionary biology, with the evolution of eusociality (societies with altruistic, non-reproductive helpers) representing a long-standing evolutionary conundrum. Recent critiques have questioned the validity of the leading theory for explaining social evolution and eusociality, namely inclusive fitness (kin selection) theory. I review recent and past literature to argue that these critiques do not succeed. Inclusive fitness theory has added fundamental insights to natural selection theory. These are the realization that selection on a gene for social behaviour depends on its effects on co-bearers, the explanation of social behaviours as unalike as altruism and selfishness using the same underlying parameters, and the explanation of within-group conflict in terms of non-coinciding inclusive fitness optima. A proposed alternative theory for eusocial evolution assumes mistakenly that workers' interests are subordinate to the queen's, contains no new elements and fails to make novel predictions. The haplodiploidy hypothesis has yet to be rigorously tested and positive relatedness within diploid eusocial societies supports inclusive fitness theory. The theory has made unique, falsifiable predictions that have been confirmed, and its evidence base is extensive and robust. Hence, inclusive fitness theory deserves to keep its position as the leading theory for social evolution.  相似文献   

7.
Inclusive fitness theory predicts that sex investment ratios in eusocial Hymenoptera are a function of the relatedness asymmetry (relative relatedness to females and males) of the individuals controlling sex allocation. In monogynous ants (with one queen per colony), assuming worker control, the theory therefore predicts female‐biased sex investment ratios, as found in natural populations. Recently, E.O. Wilson and M.A. Nowak criticized this explanation and presented an alternative hypothesis. The Wilson–Nowak sex ratio hypothesis proposes that, in monogynous ants, there is selection for a 1 : 1 numerical sex ratio to avoid males remaining unmated, which, given queens exceed males in size, results in a female‐biased sex investment ratio. The hypothesis also asserts that, contrary to inclusive fitness theory, queens not workers control sex allocation and queen–worker conflict over sex allocation is absent. Here, I argue that the Wilson–Nowak sex ratio hypothesis is flawed because it contradicts Fisher's sex ratio theory, which shows that selection on sex ratio does not maximize the number of mated offspring and that the sex ratio proposed by the hypothesis is not an equilibrium for the queen. In addition, the hypothesis is not supported by empirical evidence, as it fails to explain ‘split’ (bimodal) sex ratios or data showing queen and worker control and ongoing queen–worker conflict. By contrast, these phenomena match predictions of inclusive fitness theory. Hence, the Wilson–Nowak sex ratio hypothesis fails both as an alternative hypothesis for sex investment ratios in eusocial Hymenoptera and as a critique of inclusive fitness theory.  相似文献   

8.
Group selection theory has a history of controversy. After a period of being in disrepute, models of group selection have regained some ground, but not without a renewed debate over their importance as a theoretical tool. In this paper I offer a simple framework for models of the evolution of altruism and cooperation that allows us to see how and to what extent both a classification with and one without group selection terminology are insightful ways of looking at the same models. Apart from this dualistic view, this paper contains a result that states that inclusive fitness correctly predicts the direction of selection for one class of models, represented by linear public goods games. Equally important is that this result has a flip side: there is a more general, but still very realistic class of models, including models with synergies, for which it is not possible to summarize their predictions on the basis of an evaluation of inclusive fitness.  相似文献   

9.
My purpose here is to provide a coherent account of inclusive fitness techniques, accessible to a mathematically literate graduate student in evolutionary biology, and to relate these to standard one-locus genetic models. I begin in Sect. 2 with a general formulation of evolutionary stability; in Sect. 3 and Sect. 4 I interpret the basic stability conditions within genetic and inclusive fitness models. In Sect. 5 I extend these concepts to the case of a class-structured population, and in Sect. 6 I illustrate these notions with a sex ratio example. In Sect. 7 I give a proof of the result that under additive gene action and weak selection, an inclusive fitness argument is able to verify an important stability condition (2.5) for one-locus genetic models. Most of these results have been published.  相似文献   

10.
Mating between related individuals results in inbreeding depression, and this has been thought to select against incestuous matings. However, theory predicts that inbreeding can also be adaptive if it increases the representation of genes identical by descent in future generations. Here, I recapitulate the theory of inclusive fitness benefits of incest, and extend the existing theory by deriving the stable level of inbreeding in populations practicing mate choice for optimal inbreeding. The parsimonious assumptions of the model are that selection maximizes inclusive fitness, and that inbreeding depression is a linear function of homozygosity of offspring. The stable level of inbreeding that maximizes inclusive fitness, and is expected to evolve by natural selection, is shown to be less than previous theory suggests. For wide range of realistic inbreeding depression strengths, mating with intermediately related individuals maximizes inclusive fitness. The predicted preference for intermediately related individuals as reproductive partners is in qualitative agreement with empirical evidence from mate choice experiments and reproductive patterns in nature.  相似文献   

11.
Orr HA 《Genetics》2003,163(4):1519-1526
We know little about the distribution of fitness effects among new beneficial mutations, a problem that partly reflects the rarity of these changes. Surprisingly, though, population genetic theory allows us to predict what this distribution should look like under fairly general assumptions. Using extreme value theory, I derive this distribution and show that it has two unexpected properties. First, the distribution of beneficial fitness effects at a gene is exponential. Second, the distribution of beneficial effects at a gene has the same mean regardless of the fitness of the present wild-type allele. Adaptation from new mutations is thus characterized by a kind of invariance: natural selection chooses from the same spectrum of beneficial effects at a locus independent of the fitness rank of the present wild type. I show that these findings are reasonably robust to deviations from several assumptions. I further show that one can back calculate the mean size of new beneficial mutations from the observed mean size of fixed beneficial mutations.  相似文献   

12.
Inclusive fitness has been the cornerstone of social evolution theory for more than a half-century and has matured as a mathematical theory in the past 20 years. Yet surprisingly for a theory so central to an entire field, some of its connections to evolutionary theory more broadly remain contentious or underappreciated. In this paper, we aim to emphasize the connection between inclusive fitness and modern evolutionary theory through the following fact: inclusive fitness is simply classical Darwinian fitness, averaged over social, environmental and demographic states that members of a gene lineage experience. Therefore, inclusive fitness is neither a generalization of classical fitness, nor does it belong exclusively to the individual. Rather, the lineage perspective emphasizes that evolutionary success is determined by the effect of selection on all biological and environmental contexts that a lineage may experience. We argue that this understanding of inclusive fitness based on gene lineages provides the most illuminating and accurate picture and avoids pitfalls in interpretation and empirical applications of inclusive fitness theory.  相似文献   

13.
A recent model shows that altruism can evolve with limited migration and variable group sizes, and the authors claim that kin selection cannot provide a sufficient explanation of their results. It is demonstrated, using a recent reformulation of Hamilton's original arguments, that the model falls squarely within the scope of inclusive fitness theory, which furthermore shows how to calculate inclusive fitness and the relevant relatedness. A distinction is drawn between inclusive fitness, which is a method of analysing social behaviour; and kin selection, a process that operates through genetic similarity brought about by common ancestry, but not by assortation by genotype or by direct assessment of genetic similarity. The recent model is analysed, and it turns out that kin selection provides a sufficient explanation to considerable quantitative accuracy, contrary to the authors' claims. A parallel analysis is possible and would be illuminating for all models of social behaviour in which individuals' effects on each other's offspring numbers combine additively.  相似文献   

14.
Recent models of adaptation at the DNA sequence level assume that the fitness effects of new mutations show certain statistical properties. In particular, these models assume that the distribution of fitness effects among new mutations is in the domain of attraction of the so-called Gumbel-type extreme value distribution. This assumption has not, however, been justified on any biological or theoretical grounds. In this note, I study random mutation in one of the simplest models of mutation and adaptation-Fisher's geometric model. I show that random mutation in this model yields a distribution of mutational effects that belongs to the Gumbel type. I also show that the distribution of fitness effects among rare beneficial mutations in Fisher's model is asymptotically exponential. I confirm these analytic findings with exact computer simulations. These results provide some support for the use of Gumbel-type extreme value theory in studies of adaptation and point to a surprising connection between recent phenotypic- and sequence-based models of adaptation: in both, the distribution of fitness effects among rare beneficial mutations is approximately exponential.  相似文献   

15.
How to measure inclusive fitness   总被引:2,自引:0,他引:2  
Although inclusive fitness (Hamilton 1964) is regarded as the basic currency of natural selection, difficulty in applying inclusive fitness theory to field studies persists, a quarter-century after its introduction (Grafen 1982, 1984; Brown 1987). For instance, strict application of the original (and currently accepted) definition of inclusive fitness predicts that no one should ever attempt to breed among obligately cooperative breeders. Much of this confusion may have arisen because Hamilton's (1964) original verbal definition of inclusive fitness was not in complete accord with his justifying model. By re-examining Hamilton's original model, a modified verbal definition of inclusive fitness can be justified.  相似文献   

16.
More than a century ago, William Morton Wheeler proposed that social insect colonies can be regarded as superorganisms when they have morphologically differentiated reproductive and nursing castes that are analogous to the metazoan germ‐line and soma. Following the rise of sociobiology in the 1970s, Wheeler's insights were largely neglected, and we were left with multiple new superorganism concepts that are mutually inconsistent and uninformative on how superorganismality originated. These difficulties can be traced to the broadened sociobiological concept of eusociality, which denies that physical queen–worker caste differentiation is a universal hallmark of superorganismal colonies. Unlike early evolutionary naturalists and geneticists such as Weismann, Huxley, Fisher and Haldane, who set out to explain the acquisition of an unmated worker caste, the goal of sociobiology was to understand the evolution of eusociality, a broad‐brush convenience category that covers most forms of cooperative breeding. By lumping a diverse spectrum of social systems into a single category, and drawing attention away from the evolution of distinct quantifiable traits, the sociobiological tradition has impeded straightforward connections between inclusive fitness theory and the major evolutionary transitions paradigm for understanding irreversible shifts to higher organizational complexity. We evaluate the history by which these inconsistencies accumulated, develop a common‐cause approach for understanding the origins of all major transitions in eukaryote hierarchical complexity, and use Hamilton's rule to argue that they are directly comparable. We show that only Wheeler's original definition of superorganismality can be unambiguously linked to irreversible evolutionary transitions from context‐dependent reproductive altruism to unconditional differentiation of permanently unmated castes in the ants, corbiculate bees, vespine wasps and higher termites. We argue that strictly monogamous parents were a necessary, albeit not sufficient condition for all transitions to superorganismality, analogous to single‐zygote bottlenecking being a necessary but not sufficient condition for the convergent origins of complex soma across multicellular eukaryotes. We infer that conflict reduction was not a necessary condition for the origin of any of these major transitions, and conclude that controversies over the status of inclusive fitness theory primarily emanate from the arbitrarily defined sociobiological concepts of superorganismality and eusociality, not from the theory itself.  相似文献   

17.
Hamilton's famous rule was presented in 1964 in a paper called "The genetical theory of social behaviour (I and II)", Journal of Theoretical Biology 7, 1-16, 17-32. The paper contains a mathematical genetical model from which the rule supposedly follows, but it does not provide a link between the paper's central result, which states that selection dynamics take the population to a state where mean inclusive fitness is maximized, and the rule, which states that selection will lead to maximization of individual inclusive fitness. This note provides a condition under which Hamilton's rule does follow from his central result.  相似文献   

18.
In a recent article, Nowak et al. claim that the mathematical basis of inclusive fitness theory does not stand to scrunity and to have found an alternative explanation for eusociality. We show that these claims are based on false premises, many of which have been exposed more than 25 years ago, such as misrepresentations of the basic components of inclusive fitness and fallacious distinctions between individual fitness and inclusive fitness. Moreover, some limitations ascribed to inclusive fitness are actually limitations of current evolutionary theory, for which Nowak et al. propose no new solution. Likewise, their assertedly 'common sense' empirical alternative to estimating inclusive fitness is not applicable in cases of interest. Finally, their eusociality model merely confirms the importance of all the components of inclusive fitness. We conclude by discussing how rhetorical devices and editorial practices can impede scientific endeavours.  相似文献   

19.
Inclusive fitness theory provides conditions for the evolutionary success of a gene. These conditions ensure that the gene is selfish in the sense of Dawkins (The selfish gene, Oxford University Press, Oxford, 1976): genes do not and cannot sacrifice their own fitness on behalf of the reproductive population. Therefore, while natural selection explains the appearance of design in the living world (Dawkins in The blind watchmaker: why the evidence of evolution reveals a universe without design, W. W. Norton, New York, 1996), inclusive fitness theory does not explain how. Indeed, Hamilton’s rule is equally compatible with the evolutionary success of prosocial altruistic genes and antisocial predatory genes, whereas only the former, which account for the appearance of design, predominate in successful organisms. Inclusive fitness theory, however, permits a formulation of the central problem of sociobiology in a particularly poignant form: how do interactions among loci induce utterly selfish genes to collaborate, or to predispose their carriers to collaborate, in promoting the fitness of their carriers? Inclusive fitness theory, because it abstracts from synergistic interactions among loci, does not answer this question. Fitness-enhancing collaboration among loci in the genome of a reproductive population requires suppressing alleles that decrease, and promoting alleles that increase the fitness of its carriers. Suppression and promotion are effected by regulatory networks of genes, each of which is itself utterly selfish. This implies that genes, and a fortiori individuals in a social species, do not maximize inclusive fitness but rather interact strategically in complex ways. It is the task of sociobiology to model these complex interactions.  相似文献   

20.
The diversity of social interactions between sexual partners has long captivated biologists, and its evolution has been interpreted largely in terms of 'direct fitness' pay-offs to partners and their descendants. Inter-sexual interactions also have 'indirect effects' by affecting the fitness of relatives, with important consequences for inclusive fitness. However, inclusive fitness arguments have received limited consideration in this context, and definitions of 'direct' and 'indirect' fitness effects in this field are often inconsistent with those of inclusive fitness theory. Here, we use a sociobiology approach based on inclusive fitness theory to distinguish between direct and indirect fitness effects. We first consider direct effects: we review how competition leads to sexual conflict, and discuss the conditions under which repression of competition fosters sexual mutualism. We then clarify indirect effects, and show that greenbeard effects, kin recognition and population viscosity can all lead to episodes of indirect selection on sexual interactions creating potential for sexual altruism and spite. We argue that the integration of direct and indirect fitness effects within a sociobiology approach enables us to consider a more diverse spectrum of evolutionary outcomes of sexual interactions, and may help resolving current debates over sexual selection and sexual conflict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号