首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of polydopamine as a nitrogen containing precursor to generate catalytically active nitrogen‐doped carbon (CNx) materials on carbon nanotubes (CNTs) is reported. These N‐doped CNx/CNT materials display excellent electrocatalytic activity toward the reduction of triiodide electrolyte in dye‐sensitized solar cells (DSSCs). Further, the influence of various synthesis parameters on the catalytic performance of CNx/CNTs is investigated in detail. The best performing device fabricated with the CNx/CNTs material delivers power conversion efficiency of 7.3%, which is comparable or slightly higher than that of Pt (7.1%) counter electrode‐based DSSC. These CNx/CNTs materials show great potential to address the issues associated with the Pt electrocatalyst including the high cost and scarcity.  相似文献   

2.
Nitric oxide (NO) plays an important role in a number of physiologic processes. Evidence exists that NO, which stimulates soluble guanylate cyclase and enhances cyclic guanosine monophosphate (cGMP) levels, may inhibit platelet activation. In contrast, during platelet activation induced by different agonists, synthesis of NO in platelets occurs. In these studies, production of the stable end-products of NO-nitrite and nitrate (NOx) in human platelets, stimulated by different doses of lipopolysaccharide from Proteus mirabilis (LPS; endotoxin), has been evaluated. LPS is a weak platelet agonist that may activate various steps of platelet activation with the generation of reactive oxygen species. The mechanism of platelet activation induced by the endotoxin is not known. The aim of the present study was to measure the level of nitrite and NOx in blood platelets treated with LPS and to examine the level of nitrotyrosine in platelet proteins caused by LPS. Our results show that LPS at a low concentration (6.8 ng/ml) caused a decrease (approximately 80%) in the NOx level, whereas at higher concentrations (13.6 and 25 ng/ml) it induced an increase in the NOx level (approximately 210% and 260%, respectively). Our results indicate that LPS, like other agonists (thrombin, platelet-activating factor), can stimulate NO production in platelets. After incubating platelets with LPS, we also observed a distinct increase in platelet protein nitration (3-nitrotyrosine).  相似文献   

3.
Silk fibroin (SF) nanofiber scaffold containing microalgae Spirulina extract were prepared by electrospinning and the performance and functionality of the scaffold were evaluated. The viscosity and conductivity of the dope solution of Spirulina containing SF were examined for electrospinability and we found that the morphological structure of SF nanofiber is affected by the concentration of Spirulina extract added. The platelet adhesion and coagulation time test confirmed that the Spirulina containing SF nanofiber scaffold had excellent ability to prevent blood clotting or antithrombogenicity that is comparable to heparin. Low cytotoxicity and excellent cell adhesion and proliferation were also observed for Sprulina containing SF nanofiber scaffold by methylthiazolyldiphenyl‐tetrazolium bromide assay and confocal fluorescence microscope using fibroblast and human umbilical vein endothelial cells. Based on these results, we believe SF nanofiber scaffold containing Spirulina extract has the potential to be used as tissue engineering scaffold that requires high hemocompatibility. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 307–318, 2014.  相似文献   

4.
BackgroundThe physio-chemical properties of blood contacting biomaterials play an important role in determining their hemocompatibility. It is shown in literature that surface roughness and porosity have significant effect on hemocompatibility. In this study, we use a biocompatible, low thrombogenic nanocomposite polymer called POSS-PCU to test this hypothesis: would porosity compromise the hemocompatibility of POSS-PCU. We compared the hemocompatibility of POSS-PCU films of various pore sizes with PTFE, which is a commercially available material used in most blood contacting devices.MethodsSterilized POSS-PCU films with different size pores were prepared as samples and porous PTFE film were selected as control. And all samples were subjected to SEM for topograpgy, mechanical test for characterization and hemocompatibility tests to evaluate contact activation, platelet adhesion and activation, as well as whole blood clotting response to the samples.ResultsWCA significantly increased with the pore size of POSS-PCU film, whereas both tensile stress and strain decreased significantly as the sizes of pores increased. However, when compared to PTFE film with same size pores, POSS-PCU films showed both higher tensile stress and strain. Pore size had little impact over POSS-PCU's surface chemistry groups as tested by FTIR analysis. Contact activation and platelet adhesion essay also showed no significant difference between different POSS-PCU samples. However, in whole blood reactions, POSS-PCU with pores size around 2–5 μm showed higher BCI than plain films and those with pores size around 35–45 μm. POSS-PCU showed lower thrombogencity and higher hemocompatibility comparing with porous PTFE on the aspects of platelet activation, adhesion and whole blood reaction.Summary and conclusionsPOSS-PCU polymer films as a biomaterial in chronic blood contacting implants show significant lower thrombogencity and higher hemocompatibility than porous PTFE film. It is desirable as a coating or covering material in small diameter stents for treating cardiovascular diseases, cerebral vascular diseases and peripheral arterial diseases.  相似文献   

5.
Osaki  M. 《Plant and Soil》1993,155(1):203-206
Two Carbon-nitrogen interaction models were developed, one, expressed as DM=DM 0 exp(CN 1 N), was for growth of Gramineae (rice, wheat, and maize) and root crops (potato, sweet potato, and sugar beet), the other DM =DM 0+CN I N for Leguminosae (soybean, field bean, and aduki bean), where, DM is dry weight of plant at a given time, N is the amount of nitrogen accumulated in plant at a given time, DM 0 is the initial amount of dry weight, and CN 1 or CN 1 is the carbon-nitrogen index.The CN 1 value changed with the amount of nitrogen absorbed at the time of harvest (Nh), indicating that the relationship between the CN 1 value and Nh fitted to a hyperbolic curve as follows: CN 1= 1/(a Nh + b), where, a and b are the coefficients of the equation. In rice, coefficients a and b were estimated by the Gauss-Newton method.The CN 1, value of Leguminosae was almost constant regardless of Nh. It is thus concluded that the carbon-nitrogen interaction was significantly different between Leguminosae and other crops (Gramineae and root crops).  相似文献   

6.
During the process of producing cassava starch from Manihot esculenta roots, large amounts of cyanoglycosides were released, which rapidly decayed to CN following enzymatic hydrolysis. Depending on the varying cyanoglycoside content of the cassava varieties, the cyanide concentration in the wastewater was as high as 200 mg/l. To simulate anaerobic stabilization, a wastewater with a chemical oxygen demand (COD) of about 20 g/l was prepared from cassava roots and was fermented in a fixed-bed methanogenic reactor. The start-up phase for a 99% degradation of low concentrations of cyanide (10 mg/l) required about 6 months. After establishment of the biofilm, a cyanide concentration of up to 150 mg CN/l in the fresh wastewater was degraded during anaerobic treatment at a hydraulic retention time of 3 days. All nitrogen from the degraded cyanide was converted to organic nitrogen by the biomass of the effluent. The cyanide-degrading biocoenosis of the anaerobic reactor could tolerate shock concentrations of cyanide up to 240 mg CN/l for a short time. Up to 5 mmol/l NH4Cl (i.e. 70 mg N/l = 265 mg NH4Cl/l) in the fresh wastewater did not affect cyanide degradation. The bleaching agent sulphite, however, had a negative effect on COD and cyanide removal. For anaerobic treatment, the maximum COD space loading was 12 g l−1 day−1, equivalent to a hydraulic retention time of 1.8 days. The COD removal efficiency was around 90%. The maximum permanent cyanide space loading was 50 mg CN l−1 day−1, with tolerable shock loadings up to 75 mg CN l−1 day−1. Under steady-state conditions, the cyanide concentration of the effluent was lower than 0.5 mg/l. Received: 15 August 1997 / Received revision: 10 October 1997 / Accepted: 14 October 1997  相似文献   

7.
The role played by a bacterial community composed ofPseudomonas putida, strain 21;Pseudomonas stutzeri, strain 18; andPseudomonas sp., strain 5, and by physical and chemical factors in the degradation of CN and SCN was studied. It was shown that the degradation of CN is determined both by the action of bacteria and by abiotic physical and chemical factors (pH, O2, temperature, the medium agitation rate, etc.). The contribution of chemical degradation was found to increase drastically at pH below 9.0; when air was blown through the medium (irrespective of the pH value); under active agitation of the medium; and when the medium surface interfacing air was increased. Even at elevated pH values (9.0-9.2), suboptimal for bacterial growth, the microbial degradation could account for at most 20–25 mg/1 of CN, regardless of its initial concentration. When CN and SCN were concurrently present in the medium, the former compound was the first to be degraded by microorganisms. The rate of bacterial degradation of SCN under continuous cultivation in a chain of reactors was found to depend on its concentration, the medium flow rate, agitation rate, and the pattern of carbon source supply and could exceed 1 g/(l day). CN and SCN are utilized by bacteria solely as nitrogen sources. The mechanism of CN and SCN degradation by the microbial community is discussed. Deceased.  相似文献   

8.
The effect of cyanide (CN) on voltage-activated or cAMP-induced passive chloride conductance (G Cl ) was analyzed in isolated toad skin. Comparatively low concentrations of CN inhibited G Cl almost completely and fully reversibly, regardless of whether it was applied from the mucosal or serosal side. The IC50 was 180 ± 12 μm for voltage-activated G Cl and 305 ± 30 μm for the cAMP-inducted conductance. At [CN] <100 μm, the initial inhibition frequently declined partly in the continuous presence of CN. Inhibition was independent of the presence of Ca2+. Inhibition was stronger at more alkaline pH, which suggests that dissociated CN is the effective inhibitor. The onset of the inhibition of voltage-activated or cAMP-induced G Cl by CN occurred with half-times of 34 ± 10 sec, whereas reversibility upon washout was twice as fast (18 ± 7 sec). If [CN] <200 μm was applied under inactivating conditions (serosa −30 mV), the reduction of G Cl was stronger upon subsequent voltage-activation than under steady-state activated conditions. This effect was essentially complete less than 30 sec after apical addition of CN, but G t recovered thereafter partially in the continuous presence of CN. Dinitrophenol inhibited G Cl similarly, while omission of oxygen did not affect it. These observations, as well as the time course of inhibition and the full reversibility, suggest that interference of CN with oxidative phosphorylation and subsequent metabolic depletion is not the reason for the inhibition of G Cl . We propose that the inhibition is directly on G Cl , presumably by competition with Cl at a rate-limiting site in the pathway. Location and molecular nature of this site remain to be identified. Received: 8 February 1999/Revised: 22 September 1999  相似文献   

9.
Lee C  Kim J  Hwang S 《Biodegradation》2006,17(4):347-355
A set of experiments was carried out to maximize adenosine 5′-triphosphate (ATP) extraction efficiency from acidogenic culture using whey wastewater. ATP concentrations at different microbial concentrations increased linearly as microbial concentration decreased. More than 50% of ATP was extracted from the sample of 39 mg volatile suspended solids (VSS)/l compared to the sample of 2.8 g VSS/l. The ATP concentrations of the corresponding samples were 0.74±0.06 and 0.49±0.05 mg/l, respectively. For low VSS concentrations ranging from 39 to 92 mg/l, the extracted ATP concentration did not vary significantly at 0.73±0.01 mg ATP/l. Response surface methodology with a central composite in cube design for the experiments was used to locate the optimum for maximal ATP extraction with respect to boiling and bead beating treatments. The overall designed intervals were from 0 to 15 min and from 0 to 3 min for boiling and bead beating, respectively. The extracted ATP concentration ranged from 0.01 to 0.74 mg/l within the design boundary. The following is a partial cubic model where η is the concentration of ATP and x k is the corresponding variable term (k=boiling time and bead beating time in order): η=0.629+0.035x 1–0.818x 2–0.002x 1 x 2–0.003x 1 2 +0.254x 2 2 +0.002x 1 2 x 2. This model successfully approximates the response of ATP concentration with respect to the boiling- and bead beating-time. The condition for maximal ATP extraction was 5.6 min boiling without bead beating. The maximal ATP concentration using the model was 0.74 mg/l, which was identical to the experimental value at optimum condition for ATP extraction.  相似文献   

10.
A medicinal mushroom, Phellinus linteus, was successfully cultivated using a cheese-processing waste, whey, and the optimal bioconversion conditions for the maximum mycelial growth rate was also estimated through solid-state cultivation experiments. Response surface analysis with a face-centered design (center point replication = 5) was applied to statistically approximate the simultaneous effects of the three variables, i.e., substrate concentration (10–30 g lactose l−1), temperature (20–30°C), and pH (4–6), on the mycelial growth rate of P. linteus. The following is a partial cubic model where η is the mycelial growth rate (K r ) and x k is the corresponding variable term (k = substrate concentration, temperature, and pH in order): η = −23.8 + 8.67 × 10−2 x 1 + 1.48x 2 + 1.77x 3 + 8.00 × 10−4 x 1 x 2 + 7.25 × 10−2 x 1 x 3 + 5.13 × 10−2 x 2 x 3 −1.28 × 10−2 x 12 –3.18 × 10−2 x 22. −2.64 × 10−1 x 32 −3.28 × 10−3 x 1 x 2 x 3 + 4.68 × 10−4 x 12 x 2. The produced response surface model proved to be significant (r 2 > 0.99, P-value <0.0001, coefficient of variation <5%) to describe the explored space. Temperature was found to be the most significant factor of dominant effects on the mycelial growth rate, and other variables such as temperature2, pH, pH2, and (substrate concentration2 × temperature) also showed significant effects on the model output. The maximum mycelial growth rate was predicted to be 2.80 mm d−1 at 29.7 g lactose l−1, 26.2°C, and pH 5. Our results proved a good potential of whey to serve as an alternative growth medium for cultivating P. linteus mycelia. This may provide another potential for managing this nutrient-rich waste in a cost-effective way.  相似文献   

11.
A flow injection chemiluminescence (FI–CL) method was developed for the determination of cyanide (CN) based on the recovered CL signal by Cu2+ inhibiting a glutathione (GSH)‐capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2, and addition of Cu2+ could cause significant CL inhibition of the CdTe QDs–H2O2 system. In the presence of CN, Cu2+ can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n](n‐1)– species, and the CL signal of the CdTe QDs–H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs–H2O2 system were turned off and turned on by the addition of Cu2+ and CN, respectively. Further, the results showed that among the tested ions, only CN could recover the CL signal, which suggested that the CdTe QDs–H2O2–Cu2+ CL system had highly selectivity for CN. Under optimum conditions, the CL intensity and the concentration of CN show a good linear relationship in the range 0.0–650.0 ng/mL (R2 = 0.9996). The limit of detection for CN was 6.0 ng/mL (3σ). This method has been applied to detect CN in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The adhesion to cellulose fibres of a strain of Pseudomonas putida isolated from a paper machine was studied under different environmental conditions. The physicochemical properties of both P. putida cells and cellulose fibres were also determined to better understand the adhesion phenomenon. Adhesion was rapid (1 min) and increased with time, cell concentration and temperature (from 25 to 40°C), indicating that bacterial adhesion to cellulose fibres is essentially governed by a physicochemical process. The P. putida cell surface was negatively charged, as shown by electrophoretic mobility measurements, and was hydrophilic due to a strong electron-donor character, as shown by the microbial adhesion to solvents method. Cellulose fibres were shown to be hydrophilic by contact angle measurements using the capillary rise method. These results suggest the importance of Lewis acid-base interactions in the adhesion process. In various ionic solutions (NaCl, KCl, CaCl2 and MgCl2), adhesion increased with increasing ionic strength up to 10–100 mM, indicating that, at low ionic strength, electrostatic interactions were involved in the adhesion process. An increase in the C/N ratio of the growth medium (from 5 to 90) decreased adhesion but this could not be related to changes in physicochemical properties, suggesting that other factors may be involved. In practice, temperature, ionic strength and nitrogen concentration must be taken into consideration to reduce bacterial contamination in the paper industry.  相似文献   

13.
Erica andevalensis Cabezudo & Rivera is a threatened edaphic endemic species of Andalusia (SW Spain). Under natural conditions, the plants produce a very large number of small seeds (0.3–0.4 mm) but very few seedlings survive. Different treatments (high temperature, cold pre-treatment, nitrogen salts, and gibberellic acid applications) were tested to assess germination patterns in different populations and to determinate the most favorable conditions for germination. Gibberellic acid was provided in five different concentrations from 0 to 400 ppm GA3, while nitrogen was applied as 10 mM of either KNO3 or NH4NO3. The effect of pH on germination was also tested. The species always showed a low germination rate (6.50–22%) that was not stimulated either by 1 or 4 months in dry cold pre-treatment, nitrogen application, acid pH medium, or by high temperature (80°C for 10 min); although gibberellic acid application (100–400 ppm) significantly enhanced germination. The highest percentage of germination (41.6%) was achieved with a mean germination time to start germination (t 0) of 7.6 ± 0.54 days when the seeds were subjected to 400 ppm gibberellic acid treatment. The population origin did not have a significant effect on germination percentage.  相似文献   

14.
A thrombin inhibitor was identified for the first time in the gut of the cattle tick Boophilus microplus. Here we present the partial purification and characterization of this new molecule, which was purified from the gut extract by three chromatographic steps: ion-exchange, gel filtration and affinity chromatography in a thrombin–Sepharose resin. In SDS-PAGE the inhibitor showed an apparent molecular mass of circa 26 kDa, which is different from the two thrombin inhibitors present in the saliva of this tick. The new inhibitor delays bovine plasma clotting time and inhibits both thrombin induced fibrinogen clotting and thrombin induced platelet aggregation. However, it does not interfere with thrombin amidolytic activity upon a small substrate (H-D-Phe-Pip-Arg-para-nitroanilide), which does not require binding to thrombin exosites. Therefore, the inhibitor does not block thrombin active site, although it must interfere with one of the thrombin exosites. B. microplus gut thrombin inhibitor (BmGTI) is also capable of enhancing activated protein C (APC) activity upon its specific substrate (H-D-Glu-Pro-Arg-para-nitroanilide), an activity never described before among B. microplus molecules.  相似文献   

15.
16.
A step‐by‐step strategy is reported for improving capacitance of supercapacitor electrodes by synthesizing nitrogen‐doped 2D Ti2CTx induced by polymeric carbon nitride (p‐C3N4), which simultaneously acts as a nitrogen source and intercalant. The NH2CN (cyanamide) can form p‐C3N4 on the surface of Ti2CTx nanosheets by a condensation reaction at 500–700 °C. The p‐C3N4 and Ti2CTx complexes are then heat‐treated to obtain nitrogen‐doped Ti2CTx nanosheets. The triazine‐based p‐C3N4 decomposes above 700 °C; thus, the nitrogen species can be surely doped into the internal carbon layer and/or defect site of Ti2CTx nanosheets at 900 °C. The extended interlayer distance and c‐lattice parameters (c‐LPs of 28.66 Å) of Ti2CTx prove that the p‐C3N4 grown between layers delaminate the nanosheets of Ti2CTx during the doping process. Moreover, 15.48% nitrogen doping in Ti2CTx improves the electrochemical performance and energy storage ability. Due to the synergetic effect of delaminated structures and heteroatom compositions, N‐doped Ti2CTx shows excellent characteristics as an electrochemical capacitor electrode, such as perfectly rectangular cyclic voltammetry results (CVs, R2 = 0.9999), high capacitance (327 F g?1 at 1 A g?1, increased by ≈140% over pristine‐Ti2CTx), and stable long cyclic performance (96.2% capacitance retention after 5000 cycles) at high current density (5 A g?1).  相似文献   

17.
In situ endothelialization of cardiovascular implants has emerged in recent years as an attractive means of targeting the persistent problems of thrombosis and intimal hyperplasia. This study aimed to investigate the efficacy of immobilizing anti-CD34 antibodies onto a POSS-PCU nanocomposite polymer surface to sequester endothelial progenitor cells (EPCs) from human blood, and to characterize the surface properties and hemocompatibility of this surface. Amine-functionalized fumed silica was used to covalently conjugate anti-CD34 to the polymer surface. Water contact angle, fluorescence microscopy, and scanning electron microscopy were used for surface characterization. Peripheral blood mononuclear cells (PBMCs) were seeded on modified and pristine POSS-PCU polymer films. After 7 days, adhered cells were immunostained for the expression of EPC and endothelial cell markers, and assessed for the formation of EPC colonies. Hemocompatibility was assessed by thromboelastography, and platelet activation and adhesion assays. The number of EPC colonies formed on anti-CD34-coated POSS-PCU surfaces was not significantly higher than that of POSS-PCU (5.0±1.0 vs. 1.7±0.6, p>0.05). However, antibody conjugation significantly improved hemocompatibility, as seen from the prolonged reaction and clotting times, decreased angle and maximum amplitude (p<0.05), as well as decreased platelet adhesion (76.8±7.8 vs. 8.4±0.7, p<0.05) and activation. Here, we demonstrate that POSS-PCU surface immobilized anti-CD34 antibodies selectively captured CD34+ cells from peripheral blood, although only a minority of these were EPCs. Nevertheless, antibody conjugation significantly improves the hemocompatibility of POSS-PCU, and should therefore continue to be explored in combination with other strategies to improve the specificity of EPC capture to promote in situ endothelialization.  相似文献   

18.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm′, Fv′, NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm′, as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (P N) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4–5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios.  相似文献   

19.
To improve the hemocompatibility of polyurethanes, an amine monomer containing a long fluorine tail and phosphatidylcholine polar headgroups, 2-amino-3-oxo-3-(2-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctan amido) ethyl amino) propyl phosphorylcholine (FASPC) was firstly synthesized and characterized. Then four kinds of fluorinated phosphatidylcholine end-capped polyurethanes with different chemical structures were prepared. The surface properties of these prepared polyurethanes were characterized using X-ray photoelectron spectroscopic analysis (XPS) and water contact angle measurements. The results indicated that the phosphatidylcholine (PC) polar headgroups along with the fluorine tail could be easily enriched on the top surfaces, and the PC groups could be highly oriented on the outmost surface when the polymer film was in contact with water for only 30 s at room temperature. The evaluation of hemocompatibity was carried out via fibrinogen adsorption and platelet adhesion. Fibrinogen adsorption (37°C for 90 min) decreased by 98% to 87% compared to that on ordinary polyurethane surfaces, and almost no platelet adhesion and activation was observed at 37°C for 2 h.  相似文献   

20.
 Fourier transform infrared (FTIR) spectroscopy is used to compare the thermally induced conformational changes in horse, bovine and tuna ferricytochromes c in 50 mM phosphate/0.2 M KCl. Thermal titration in D2O at pD 7.0 of the amide II intensity of the buried peptide NH protons reveals tertiary structural transitions at 54  °C in horse and at 57  °C in bovine c. These transitions, which occur well before loss of secondary structure, are associated with the alkaline isomerization involving Met80 heme-ligand exchange. In tuna c, the amide-II-monitored alkaline isomerization occurs at 35  °C, followed by a second amide II transition at 50  °C revealing a hitherto unreported conformational change in this cytochrome. Amide II transitions at 50  °C (tuna) and 54  °C (horse) are also observed during the thermal titration of the CN-ligated cytochromes (where CN displaces the Met80 ligand), but a well-defined 35  °C amide II transition is absent from the titration curve of the CNadduct of tuna c. The different mechanisms suggested by the FTIR data for the alkaline isomerization of tuna and the mammalian cytochromes c are discussed. After the alkaline isomerization, loss of secondary structure and protein aggregation occur within a 5  °C range with T m values at 74  °C (bovine c), 70  °C (horse c) and 65  °C (tuna c), as monitored by changes in the amide I′ bands. The FTIR spectra were also used to compare the secondary structures of the ferricytochromes c at 25  °C. Curve fitting of the amide I (H2O) and amide I′ (D2O) bands reveals essentially identical secondary structure in horse and bovine c, whereas splitting of the α-helical absorption of tuna c indicates the presence of less-stable helical structures. CN adduct formation results in no FTIR-detectable changes in the secondary structures of either tuna or horse c, indicating that Met80 ligation does not influence the secondary structural elements in these cytochromes. The data provided here demonstrate for the first time that the selective thermal titration of the amide II intensity of buried peptide NH protons in D2O is a powerful tool in protein conformational analysis. Received: 1 April 1999 / Accepted: 24 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号