首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microcystins (cyclic heptapeptide hepatotoxins), isolated from 13 freshwater Oscillatoria agardhii strains from eight different Finnish lakes by high-performance liquid chromatography, were characterized by amino acid analysis, fast atom bombardment mass spectrometry (FABMS), and tandem FABMS (FABMS/collisionary-induced dissociation/MS). All strains produced two to five different microcystins. In total, eight different compounds, of which five were known microcystins, were isolated. The known compounds identified were [D-Asp3]MCYST (microcystin)-LR, [Dha7]MCYST-LR, [D-Asp3]MCYST-RR, [Dha7]MCYST-RR, and [D-Asp3,Dha7]MCYST-RR. This is the first time that isolation of these toxins from Oscillatoria spp., with the exception of [D-Asp3]MCYST-RR, has been reported. Three of the strains produced a new microcystin, and the structure was assigned as [D-Asp3,Mser7]MCYST-RR. The structures of two new microcystins, produced as minor components by one Oscillatoria strain, could not be determined because of the small amounts isolated from the cells. Four strains produced [Dha7]MCYST-RR as the main toxin, but [D-Asp3]MCYST-RR was clearly the most abundant and most frequently occurring toxin among these isolates of O. agardhii.  相似文献   

2.
Microcystin concentrations in two Dutch lakes with an important Planktothrix component were related to the dynamics of cyanobacterial genotypes and biovolumes. Genotype composition was analysed by using denaturing gradient gel electrophoresis (DGGE) profiling of the intergenic transcribed spacer region of the rrn operon (rRNA-ITS), and biovolumes were measured by using microscopy. In Lake Tjeukemeer, microcystins were present throughout summer (maximum concentration 30 microg l(-1)) while cyanobacterial diversity was low and very constant. The dominant phototroph was Planktothrix agardhii. In contrast, Lake Klinckenberg showed a high microcystin peak (up to 140 microg l(-1)) of short duration. In this lake, cyanobacterial diversity was higher and very dynamic with apparent genotype successions. Several genotypes derived from DGGE field profiles matched with genotypes from cultures isolated from field samples. The microcystin peak measured in Lake Klinckenberg could be confidently linked to a bloom of Planktothrix rubescens, as microscopic and genotypic analysis showed identity of bloom samples and a toxin-producing P. rubescens culture. Toxin-producing genotypes were detected in the microbial community before they reached densities at which they were detected by using microscopy. Cyanobacterial biovolumes provided additional insights in bloom dynamics. In both lakes, the microcystin content per cell was highest at the onset of the blooms. Our results suggest that while genotypic characterization of a lake can be valuable for detection of toxic organisms, for some lakes a monitoring of algal biomass has sufficient predictive value for an assessment of toxin production.  相似文献   

3.
The factors that control the production of microcystins (hepatotoxins) during cyanobacterial blooms, and the function of these metabolites remain largely unknown. In an attempt to provide answers to these questions, we compared the fitness of microcystin (MC)-producing and non-MC-producing Planktothrix agardhii strains under various experimental conditions. More specifically, we investigated the effects of temperature, light intensity and nitrate concentrations on several MC-producing and non-MC-producing strains in monoculture and competition experiments. In the monoculture experiments, no significant difference in cell growth rates was found for any of the environmental conditions tested. On the other hand, at the end of the competition experiments, we found that when the environmental conditions limited cell growth, MC-producing strains were clearly winning out over the non-MC-producing ones. This suggested that, under growth-limiting conditions, the benefits of producing MC outweigh the cost. Moreover, the reverse was found under non-growth-limiting conditions, suggesting that under environmental conditions that favour cyanobacterial growth, the cost of MC production must outweigh its benefits. These findings suggest that environmental factors may have an indirect effect on the MC production rate, and on the selection of MC-producing and non-MC-producing strains, via their direct impact on both the cell growth rate and the cell densities in the cultures. Several hypotheses have been advanced concerning the possible function of MCs, but none of them seems to be supported by our data.  相似文献   

4.
The effects of bacteria, temperature, light, nitrate, and orthophosphate on growth of and hepatotoxin (desmethyl-3-microcystin-RR) production by Oscillatoria agardhii strains were studied under laboratory conditions. Strains were cultivated in Z8 medium under continuous illumination. Growth was determined by measuring dry weight and chlorophyll a, while toxin was analyzed by high-performance liquid chromatography. Two of the three toxic cultures studied produced more toxins in axenic than in nonaxenic cultures. High toxin production correlated with high nitrogen concentrations (test range, 0.42 to 84 mg of N per liter) and low light intensity (test range, 12 to 95 microeinsteins/m2 per s). Toxin production depended on phosphorus concentration at low levels of phosphorus (0.1 to 0.4 mg of P per liter) and higher concentrations had no additional effect. The optimum temperature for toxin production and growth of green O. agardhii was 25 degrees C. Red O. agardhii produced almost similar amounts of toxin at temperatures of 15 to 25 degrees C. The lowest toxin production by both strains was at 30 degrees C.  相似文献   

5.
The effects of bacteria, temperature, light, nitrate, and orthophosphate on growth of and hepatotoxin (desmethyl-3-microcystin-RR) production by Oscillatoria agardhii strains were studied under laboratory conditions. Strains were cultivated in Z8 medium under continuous illumination. Growth was determined by measuring dry weight and chlorophyll a, while toxin was analyzed by high-performance liquid chromatography. Two of the three toxic cultures studied produced more toxins in axenic than in nonaxenic cultures. High toxin production correlated with high nitrogen concentrations (test range, 0.42 to 84 mg of N per liter) and low light intensity (test range, 12 to 95 microeinsteins/m2 per s). Toxin production depended on phosphorus concentration at low levels of phosphorus (0.1 to 0.4 mg of P per liter) and higher concentrations had no additional effect. The optimum temperature for toxin production and growth of green O. agardhii was 25 degrees C. Red O. agardhii produced almost similar amounts of toxin at temperatures of 15 to 25 degrees C. The lowest toxin production by both strains was at 30 degrees C.  相似文献   

6.
Cyanobacterial blooms have increased in freshwater ecosystems worldwide in the last century, mostly resulting from eutrophication and climate change. These blooms represent serious threats to environmental and human health because of the production of harmful metabolites, called cyanotoxins. Like many countries, Egypt has been plagued with cyanobacterial blooms in most water sources, including the Nile River, irrigation canals, lakes and fishponds. However, the data about cyanotoxins produced in these blooms are limited. Only two types of cyanotoxins, microcystins and cylindrospermopsin, have been identified and characterised, mainly from Microcystis and Cylindrospermopsis blooms. The data revealed the presence of microcystins in raw and treated drinking waters at concentrations (0.05–3.8 µg l?1), exceeding the WHO limit (1 µg l?1) in some drinking water treatment plants. In addition, Nile tilapia Oreochromis niloticus caught from ponds containing heavy cyanobacterial blooms have accumulated considerable amounts of cyanotoxins in their edible tissues. The data presented here could be the catalyst for the establishment of a monitoring and management programme for harmful cyanobacteria and their cyanotoxins in Egyptian fresh waters. This review also elucidates the important research gaps and possible avenues for future research on cyanobacterial blooms and cyanotoxins in Egypt.  相似文献   

7.
This paper describes the occurrence of toxic cyanobacteria along the Guadiana River over its course between Mérida and Badajoz (Extremadura, Spain). Water sampling for phytoplankton quantification and toxin analysis was carried out regularly between 1999 and 2001 in six different locations, including two shallow, slow-flowing river sites, two streamed river sites and two drinking water reservoirs. The cyanobacterial community differed significantly between these locations, especially during the summer. The predominant genera were Microcystis, Oscillatoria, Aphanizomenon and Anabaena. Using an ELISA assay the total microcystin contents of natural water samples from the most eutrophic locations ranged from 0.10 - 21.86 microg mcyst-LR equivalent x L(-1) in Valdelacalzada and 0.10-11.3 microg mcyst-LR equivalent x L(-1) in Vitonogales, and a seasonal variation of toxin content was observed. The amount of microcystins produced by each strain was determined by ELISA assay and the detection and identification of microcystin variants of three toxic strains of Microcystis aeruginosa was performed by high performance liquid chromatography (HPLC). The analysis of microcystins of the cultured strains revealed that toxin production was variable among different strains of M. aeruginosa isolated either from different blooms or from the same bloom.  相似文献   

8.
The pigmentation of five strains of Oscillatoria bornetii and four strains of Oscillatoria agardhii/rubescens were surveyed in vivo by spectrophotometry. The O. bornetii strains are very homogeneous with regard to qualitative pigment composition, but strain differences with regard to relative pigment content are remarkable. The O. agardhii/rubescens complex is variable, especially with regard to phycoerythrin content. In vivo pigment techniques may be promising as an additional, simple tool in blue–green algal taxonomy.  相似文献   

9.
10.
Two types of commercially available ELISA kits for the immunoassay of cyanobacterial microcystins were evaluated for potential interference effects due to methanol, salinity, pH, plasticware and cyanobacterial extract. Of the treatments examined, methanol had the greatest effect, giving false positive microcystin concentrations with increasing methanol concentrations up to 30% (v/v) compared with the negative calibrators of each kit. False positive microcystin results were also produced with increasing salinity up to full strength seawater. Decreases in microcystin-LR equivalents were observed when assaying purified microcystin-LR at pH values between 6.25 and 10. Aqueous microcystin-LR solutions in plastic microcentrifuge tubes after pipetting with disposable plastic tips had lower toxin concentrations than expected when analysed by ELISA. Indicated microcystin concentrations in cyanobacterial extracts varied between kit types and the choice of blanks used. Although ELISAs can be useful tools for the screening of water and cyanobacterial blooms for microcystins and nodularins, users should be aware that commercial kits can be susceptible to interference by commonly encountered environmental and laboratory conditions and materials.  相似文献   

11.
Water blooms formed by potentially toxic species of cyanobacteria are a common phenomenon in the Baltic Sea in late summer. Twenty-five cyanobacterial bloom samples were collected from open and coastal waters of the Baltic Sea during 1985 to 1987, and their toxicity was determined by mouse bioassay. All of 5 bloom samples from the southern Baltic Sea, 6 of 6 from the open northern Baltic Sea (Gulf of Finland), and 7 of 14 Finnish coastal samples were found to contain hepatotoxic cyanobacteria. Nodularia spumigena and Aphanizomenon flos-aquae occurred together in high amounts in blooms from the open-sea areas. In addition, coastal samples contained the species Anabaena lemmermannii, Microcystis aeruginosa, and Oscillatoria agardhii. Eighteen hepatotoxic N. spumigena cultures were isolated from water bloom and open-sea water samples. High-pressure liquid chromatographic analysis of both hepatotoxic bloom samples and Nodularia strains showed a single toxic fraction. The toxin concentrations of the blooms were less than or equal to 2.4 mg/g of freeze-dried material, and those of laboratory-grown cultures were 2.5 to 8.0 mg/g of freeze-dried cells. A single toxin was isolated from three N. spumigena-containing bloom samples and three N. spumigena laboratory isolates. Amino acid analysis and low- and high-resolution fast-atom bombardment mass spectroscopy indicated that the toxin from all of the sources was a cyclic pentapeptide (molecular weight, 824) containing glutamic acid, beta-methylaspartic acid, arginine, N-methyldehydrobutyrine, and 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Water blooms formed by potentially toxic species of cyanobacteria are a common phenomenon in the Baltic Sea in late summer. Twenty-five cyanobacterial bloom samples were collected from open and coastal waters of the Baltic Sea during 1985 to 1987, and their toxicity was determined by mouse bioassay. All of 5 bloom samples from the southern Baltic Sea, 6 of 6 from the open northern Baltic Sea (Gulf of Finland), and 7 of 14 Finnish coastal samples were found to contain hepatotoxic cyanobacteria. Nodularia spumigena and Aphanizomenon flos-aquae occurred together in high amounts in blooms from the open-sea areas. In addition, coastal samples contained the species Anabaena lemmermannii, Microcystis aeruginosa, and Oscillatoria agardhii. Eighteen hepatotoxic N. spumigena cultures were isolated from water bloom and open-sea water samples. High-pressure liquid chromatographic analysis of both hepatotoxic bloom samples and Nodularia strains showed a single toxic fraction. The toxin concentrations of the blooms were less than or equal to 2.4 mg/g of freeze-dried material, and those of laboratory-grown cultures were 2.5 to 8.0 mg/g of freeze-dried cells. A single toxin was isolated from three N. spumigena-containing bloom samples and three N. spumigena laboratory isolates. Amino acid analysis and low- and high-resolution fast-atom bombardment mass spectroscopy indicated that the toxin from all of the sources was a cyclic pentapeptide (molecular weight, 824) containing glutamic acid, beta-methylaspartic acid, arginine, N-methyldehydrobutyrine, and 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In the survey of 14 species of laboratory-cultured cyanobacteria for hemagglutinins, we newly detected the activity in two species, Oscillatoria agardhii, strain NIES-204, and Phormidium foveolarum, strain NIES-503. From the extract of O. agardhii, which showed the highest activity with trypsin-treated erythrocytes of rabbit, a lectin was purified to homogeneity by the combination of precipitation with (NH4)2SO4, gel filtration, hydrophobic chromatography and reverse phase chromatography. The purified lectin, designated OAA, was a monomeric protein with an apparent molecular weight of 13,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 16,000 on gel filtration. The amino acid composition was rich in glycine and acidic amino acids. The hemagglutination activity was inhibited by glycoproteins such as yeast mannan, but not by any of the monosaccharides tested. The activity was stable over a wide range of pH (4-11) and at a high temperature of 80 degrees C, and independent on the presence of divalent cations. The features of OAA resembled those of many of lectins from marine macroalgae. The sequence of amino-terminal residues of OAA was determined as ALYNVENQWGGSSAPWNEGG, which was highly homologous to those of lectins from macroalgae of the genus Eucheuma and that of a myxobacterium Myxococcus xanthus hemagglutinin.  相似文献   

14.
Allelopathic activity of Chara aspera   总被引:5,自引:2,他引:3  
Allelopathic activity of Chara aspera was determined in agar diffusion assays using planktonic cyanobacteria as target organisms. Growth inhibition of cyanobacterial strains was observed in bioassays inoculated with living Chara aspera shoots as well as with 60% aqueous methanol extracts of Chara aspera. For further analysis, the methanol extract was fractionated into three parts: a lipophilic methanol – a butylmethylether-extract and a hydrophilic methanol extract. The bioassays indicated that major allelopathic activity was retained in the hydrophilic methanol – and the lipophilic butylmethylether-extract. Separation of the extracts by means of high performance liquid chromatography followed by fractionation of the eluant resulted in supplementary nine fractions, three from each part, respectively. Three fractions exhibited a strong growth inhibition of the target organism Anabaena cylindrica Lemmermann. The second and the third fraction of the lipophilic butylmethylether extract indicate the presence of novel allelopathic active compounds with lipophilic characteristics. The results lead to the suggestion that more than two chemical compounds in Chara aspera are responsible for the growth inhibition of cyanobacteria.  相似文献   

15.
Microcystin-LR (MC-LR) is a cyanobacterial heptapeptide that presents acute and chronic hazards to animal and human health. The morphological changes in mitochondria are the primary effect induced by MC-LR leading to cell death. We investigated the toxicity of cyanobacterial microcystin-containing extract (CEM) on the respiratory complex of mammalian mitochondria from Bos taurus. Cyanobacterial blooms of Microcystis aeruginosa were harvested from Sulejow Reservoir, a source of drinking water in central Poland. The concentration of microcystin-LR (MC-LR(CEM)) in CEM extract was determined by high-performance liquid chromatography (HPLC). Commercially available microcystin-LR (Sigma) was used as a standard (MC-LR(S)); both standard and CEM extract were incubated with mitochondria in different doses and time of exposure. MC-RL(CEM) at 1 nM, maximal acceptable dose of microcystin (WHO) in drinking water, provoked activation of cytochrome c oxidase complex in mitochondria. We suggest that it might be considered as a defensive signal of mitochondria against low concentration of a toxic compound. In contrast 1 iM MC-RL(CME) inhibited the activity of mitochondrial oxidase complex much stronger than the same concentration of standard MC-RL(S) (58% vs. 87% of control activity, P<0.05), and this may cause a similar effect to long-term consumption of water. In conclusion, we affirm that CEM extract is highly toxic, and mitochondria could be used as an indicator of this toxicity in vivo, especially during long-term consumption of water from reservoirs where microcystin is produced.  相似文献   

16.
Cyanobacteria (83 strains and seven natural populations) were screened for content of apoptosis (cell death)-inducing activity towards neoplastic cells of the immune (jurkat acute T-cell lymphoma) and hematopoetic (acute myelogenic leukemia) lineage. Apoptogenic activity was frequent, even in strains cultured for decades, and was unrelated to whether the cyanobacteria had been collected from polar, temperate, or tropic environments. The activity was more abundant in the genera Anabaena and Microcystis compared to Nostoc, Phormidium, Planktothrix, and Pseudanabaena. Whereas the T-cell lymphoma apoptogens were frequent in organic extracts, the cell death-inducing activity towards leukemia cells resided mainly in aqueous extracts. The cyanobacteria were from a culture collection established for public health purposes to detect toxic cyanobacterial blooms, and 54 of them were tested for toxicity by the mouse bioassay. We found no correlation between the apoptogenic activity in the cyanobacterial isolates with their content of microcystin, nor with their ability to elicit a positive standard mouse bioassay. Several strains produced more than one apoptogen, differing in biophysical or biological activity. In fact, two strains contained microcystin in addition to one apoptogen specific for the AML cells, and one apoptogen specific for the T-cell lymphoma. This study shows the potential of cyanobacterial culture collections as libraries for bioactive compounds, since strains kept in cultures for decades produced apoptogens unrelated to the mouse bioassay detectable bloom-associated toxins.  相似文献   

17.
The cyanobacterial hepatotoxins, microcystin and nodularin, are produced by a wide range of cyanobacteria. Microcystin production has been reported in the four cyanobacterial orders: Oscillatoriales, Chroococcales, Stigonematales, and Nostocales. The production of nodularin is a distinct characteristic of the Nostocales genus Nodularia. A single rapid method is needed to reliably detect cyanobacteria that are potentially capable of producing these hepatotoxins. To this end, a PCR was designed to detect all potential microcystin and nodularin-producing cyanobacteria from laboratory cultures as well as in harmful algal blooms. The aminotransferase (AMT) domain, which is located on the modules mcyE and ndaF of the microcystin and nodularin synthetase enzyme complexes, respectively, was chosen as the target sequence because of its essential function in the synthesis of all microcystins as well as nodularins. Using the described PCR, it was possible to amplify a 472 bp PCR product from the AMT domains of all tested hepatotoxic species and bloom samples. Sequence data provided further insight into the evolution of the microcystin and nodularin synthetases through bioinformatic analyses of the AMT in microcystin and nodularin synthetases, with congruence between the evolution of 16S rRNA and the AMT domain.  相似文献   

18.
The concentration of microcystins (MCs) produced during blooms depends on variations in both the proportion of strains containing the genes involved in MC production and the MC cell quota (the ratio between the MC concentration and the density of cells with the mcyA genotype) for toxic strains. In order to assess the dynamics of MC-producing and non-MC-producing strains and to identify the impact of environmental factors on the relative proportions of these two subpopulations, we performed a 2-year survey of a perennial bloom of Planktothrix agardhii (cyanobacteria). Applying quantitative real-time PCR to the mcyA and phycocyanin genes, we found that the proportion of cells with the mcyA genotype varied considerably over time (ranging from 30 to 80% of the population). The changes in the proportion of cells with the mcyA genotype appeared to be inversely correlated to changes in the density of P. agardhii cells and also, to a lesser extent, to the availability of certain nutrients and the abundance of cladocerans. Among toxic cells, the MC cell quota varied throughout the survey. However, a negative correlation between the MC cell quota and the mcyA cell number during two short periods characterized by marked changes in the cyanobacterial biomass was found. Finally, only 54% of the variation in the MC concentrations measured in the lake can be explained by the dynamics of the density of cells with the MC producer genotype, suggesting that this measurement is not a satisfactory method for use in monitoring programs intended to predict the toxic risk associated with cyanobacterial proliferation.  相似文献   

19.
Cyanobacteria are capable of producing multiple microcystin variants simultaneously. The mechanisms that determine the composition of microcystin variants in cyanobacteria are still debated. [Asp3]microcystin-RR contains arginine at the position where the more toxic [Asp3]microcystin-LR incorporates leucine. We cultured the filamentous cyanobacterium Planktothrix agardhii strain 126/3 with and without external addition of leucine and arginine. Addition of leucine to the growth medium resulted in a strong increase of the [Asp3]microcystin LR/RR ratio, while addition of arginine resulted in a decrease. This demonstrates that amino acid availability plays a role in the synthesis of different microcystin variants. Environmental changes affecting cell metabolism may cause differences in the intracellular availability of leucine and arginine, which can thus affect the production of microcystin variants. Because leucine contains one nitrogen atom while arginine contains four nitrogen atoms, we hypothesized that low nitrogen availability might shift the amino acid composition in favor of leucine, which might explain seasonal increases in the [Asp3]microcystin LR/RR ratio in natural populations. However, when a continuous culture of P. agardhii was shifted from nitrogen-saturated to a nitrogen-limited mineral medium, leucine and arginine concentrations decreased, but the leucine/arginine ratio did not change. Accordingly, while the total microcystin concentration of the cells decreased, we did not observe changes in the [Asp3]microcystin LR/RR ratio in response to nitrogen limitation.  相似文献   

20.
The over-enrichment of nitrogen (N) in the environment has contributed to severe and recurring harmful cyanobacterial blooms, especially by the non-N2-fixing Microcystis spp. N chemical speciation influences cyanobacterial growth, persistence and the production of the hepatotoxin microcystin, but the physiological mechanisms to explain these observations remain unresolved. Stable-labelled isotopes and metabolomics were employed to address the influence of nitrate, ammonium, and urea on cellular physiology and production of microcystins in Microcystis aeruginosa NIES-843. Global metabolic changes were driven by both N speciation and diel cycling. Tracing 15N-labelled nitrate, ammonium, and urea through the metabolome revealed N uptake, regardless of species, was linked to C assimilation. The production of amino acids, like arginine, and other N-rich compounds corresponded with greater turnover of microcystins in cells grown on urea compared to nitrate and ammonium. However, 15N was incorporated into microcystins from all N sources. The differences in N flux were attributed to the energetic efficiency of growth on each N source. While N in general plays an important role in sustaining biomass, these data show that N-speciation induces physiological changes that culminate in differences in global metabolism, cellular microcystin quotas and congener composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号