首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since their first use in the early 60's, pulsed lasers have become increasingly popular for their ability to ablate biological tissue. Short laser pulses allow high precision surgery for biological and medical applications with minimal invasiveness. Performing highly targeted manipulation and ablation allows experiments impossible so far in development biology, cellular biology or even assisted reproductive technologies and laser surgery has been increasingly used over the last five years to answer key questions in Biology. Recently, picosecond UV and femtosecond IR laser pulses have been used to cleave microtubules and to severe actin stress fibers in vivo with a spatial precision in the submicrometer range to study their dynamics without affecting cell viability. We review recent findings on the underlying principles of pulsed laser nanosurgery mechanisms showing how the use of ultra short laser pulses increases precision and non-invasiveness of laser surgery. We show how the understanding of the surgical process allows one to distinguish between single cell ablation in living organisms or intracellular nanosurgery in living cells and we review recent applications to the study of forces and the quantification of cytoskeleton dynamics.  相似文献   

2.
The high-resolution spatial induction of ultraviolet (UV) photoproducts in mammalian cellular DNA is a goal of many scientists who study UV damage and repair. Here we describe how UV photoproducts can be induced in cellular DNA within nanometre dimensions by near-diffraction-limited 750 nm infrared laser radiation. The use of multiphoton excitation to induce highly localized DNA damage in an individual cell nucleus or mitochondrion will provide much greater resolution for studies of DNA repair dynamics and intracellular localization as well as intracellular signalling processes and cell–cell communication. The technique offers an advantage over the masking method for localized irradiation of cells, as the laser radiation can specifically target a single cell and subnuclear structures such as nucleoli, nuclear membranes or any structure that can be labelled and visualized by a fluorescent tag. It also increases the time resolution with which migration of DNA repair proteins to damage sites can be monitored. We define the characteristics of localized DNA damage induction by near-infrared radiation and suggest how it may be used for new biological investigations.  相似文献   

3.
Targeted delivery of materials to individual cells remains a challenge in nanoscience and nanomedicine. Near infrared (NIR) laser injection may be a promising alternative to manual injection (where the micropipet diameter limits targeting to small cells) or other laser techniques (such as picosecond green and UV lasers, which can be damaging to cells). However, the efficiency with which NIR pulses can deliver nanoparticles and any adverse effects on living cells needs thorough testing. Toward this end, we have determined the efficacy and toxicity of delivering quantum dots (QDs) into cells of Xenopus laevis embryos by NIR laser injection. Because this model system provides not only living cells but also a developing organism, we were able to assess relatively long-term effects of NIR pulses on embryonic development (through the tadpole stage). We developed parameters for NIR pulses that did not affect embryonic viability or morphology and delivered QDs as effectively as manual injection. Higher intensities of NIR pulses caused permanent damage to the targeted cells, and thus NIR pulses may also prove useful for ablation of specific cells within tissues.  相似文献   

4.
Analysis of cell regulation requires methods for perturbing molecular processes within living cells with spatial discrimination on the nanometer-scale. We present a technique for ablating molecular structures in living cells using low-repetition rate, low-energy femtosecond laser pulses. By tightly focusing these pulses beneath the cell membrane, we ablate cellular material inside the cell through nonlinear processes. We selectively removed sub-micrometer regions of the cytoskeleton and individual mitochondria without altering neighboring structures or compromising cell viability. This nanoscissor technique enables non-invasive manipulation of the structural machinery of living cells with several-hundred-nanometer resolution. Using this approach, we unequivocally demonstrate that mitochondria are structurally independent functional units, and do not form a continuous network as suggested by some past studies.  相似文献   

5.
本文综述了生物科学中近红外(NIR)多光子激光扫描显微技术的进展,其中包括:多光子显微特点,激光光源,荧光寿命的测量,多光子多色实时杂化荧光(FISH),非人侵性活体光学解剖,植物学中的多光子显微技术,细胞的多光子显微损伤、皮米非入侵和非接触性外科手术等。  相似文献   

6.

Background  

Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells.  相似文献   

7.
The influence of infrared laser pulses on intracellular Ca2+ signaling was investigated in neural cell lines with fluorescent live cell imaging. The probe Fluo‐4 was used to measure Ca2+ in HT22 mouse hippocampal neurons and nonelectrically excitable U87 human glioblastoma cells exposed to 50 to 500 ms infrared pulses at 1470 nm. Fluorescence recordings of Fluo‐4 demonstrated that infrared stimulation induced an instantaneous intracellular Ca2+ transient with similar dose‐response characteristics in hippocampal neurons and glioblastoma cells (half‐maximal effective energy density EC50 of around 58 J.cm?2). For both type of cells, the source of the infrared‐induced Ca2+ transients was found to originate from intracellular stores and to be mediated by phospholipase C and IP3‐induced Ca2+ release from the endoplasmic reticulum. The activation of phosphoinositide signaling by IR light is a new mechanism of interaction relevant to infrared neural stimulation that will also be widely applicable to nonexcitable cell types. The prospect of infrared optostimulation of the PLC/IP3 cell signaling cascade has many potential applications including the development of optoceutical therapeutics.   相似文献   

8.
Laser tweezers and multiphoton microscopes in life sciences   总被引:5,自引:1,他引:4  
Near infrared (NIR) laser microscopy enables optical micromanipulation, piconewton force determination, and sensitive fluorescence studies by laser tweezers. Otherwise, fluorescence images with high spatial and temporal resolution of living cells and tissues can be obtained via non-resonant fluorophore excitation with multiphoton NIR laser scanning microscopes. Furthermore, NIR femtosecond laser pulses at TW/cm2 intensities can be used to realize non-invasive contact-free surgery of nanometer-sized structures within living cells and tissues. Applications of these novel versatile NIR laser-based tools for the determination of motility forces, coenzyme and chlorophyll imaging, three-dimensional multigene detection, non-invasive optical sectioning of tissues ("optical biopsy"), functional protein imaging, and nanosurgery of chromosomes are described.  相似文献   

9.
How environmental mechanical forces affect cellular functions is a central problem in cell biology. Theoretical models of cellular biomechanics provide relevant tools for understanding how the contributions of deformable intracellular components and specific adhesion conditions at the cell interface are integrated for determining the overall balance of mechanical forces within the cell. We investigate here the spatial distributions of intracellular stresses when adherent cells are probed by magnetic twisting cytometry. The influence of the cell nucleus stiffness on the simulated nonlinear torque-bead rotation response is analyzed by considering a finite element multi-component cell model in which the cell and its nucleus are considered as different hyperelastic materials. We additionally take into account the mechanical properties of the basal cell cortex, which can be affected by the interaction of the basal cell membrane with the extracellular substrate. In agreement with data obtained on epithelial cells, the simulated behaviour of the cell model relates the hyperelastic response observed at the entire cell scale to the distribution of stresses and strains within the nucleus and the cytoskeleton, up to cell adhesion areas. These results, which indicate how mechanical forces are transmitted at distant points through the cytoskeleton, are compared to recent data imaging the highly localized distribution of intracellular stresses.  相似文献   

10.
Exocytosis in adrenal chromaffin cells is strongly influenced by the pattern of stimulation. To understand the dynamic and spatial properties of the underlying Ca(2+) signal, we used pulsed laser Ca(2+) imaging to capture Ca(2+) gradients during stimulation by single and repetitive depolarizing stimuli. Short single pulses (10-100 ms) lead to the development of submembrane Ca(2+) gradients, as previously described (F. D. Marengo and J. R. Monck, 2000, Biophysical Journal, 79:1800-1820). Repetitive stimulation with trains of multiple pulses (50 ms each, 2Hz) produce a pattern of intracellular Ca(2+) increase that progressively changes from the typical Ca(2+) gradient seen after a single pulse to a Ca(2+) increase throughout the cell that peaks at values 3-4 times higher than the maximum values obtained at the end of single pulses. After seven or more pulses, the fluorescence increase was typically larger in the interior of the cell than in the submembrane region. The pattern of Ca(2+) gradient was not modified by inhibitors of Ca(2+)-induced Ca(2+) release (ryanodine), inhibitors of IP(3)-induced Ca(2+) release (xestospongin), or treatments designed to deplete intracellular Ca(2+) stores (thapsigargin). However, we found that the large fluorescence increase in the cell interior spatially colocalized with the nucleus. These results can be simulated using mathematical models of Ca(2+) redistribution in which the nucleus takes up Ca(2+) by active or passive transport mechanisms. These results show that chromaffin cells can respond to depolarizing stimuli with different dynamic Ca(2+) signals in the submembrane space, the cytosol, and the nucleus.  相似文献   

11.
We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in‐house built prototype device, tightly focused near‐infrared laser pulses are used to create optical breakdown in the dermis while leaving the epidermis intact, resulting in lesions due to cavitation and plasma explosion. This stimulates a healing response and consequently skin remodelling, resulting in skin rejuvenation effects. Analysis of ex‐vivo and in‐vivo treated human skin samples successfully demonstrated the safety and effectiveness of the microscopic lesion creation inside the dermis. Treatments led to mild side effects that can be controlled by small optimizations of the optical skin contact and treatment depth within the skin. The histological results from a limited panel test performed on five test volunteers show evidence of microscopic lesion creation and new collagen formation at the sites of the optical breakdown. This potentially introduces a safe, breakthrough treatment procedure for skin rejuvenation without damaging the epidermis with no or little social down‐time and with efficacy comparable to conventional fractional ablative techniques. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Behavior of a fluorescent analogue of calmodulin in living 3T3 cells   总被引:9,自引:8,他引:1  
We have prepared and partially characterized a lissamine-rhodamine B fluorescent analogue of calmodulin, LRB-CM. The analogue had a dye/protein ratio of approximately 1.0 and contained no free dye or contaminating labeled proteins. LRB-CM was indistinguishable from native calmodulin upon SDS PAGE and in assays of phosphodiesterase and myosin light chain kinase. The emission spectrum of LRB-CM was insensitive to changes in pH, ionic strength, and temperature over the physiological range, but the apparent quantum yield was influenced somewhat by divalent cation concentration. LRB-CM injected into living Swiss 3T3 fibroblasts became associated with nitrobenzoxadiazole-phallacidin staining stress fibers in some interphase cells. LRB-CM and acetamidofluorescein-labeled actin co-injected into the same cell both became associated with fibers in some cells, but in most cases association of the two analogues with fibers was mutually exclusive. This suggests that calmodulin may differ from actin in the timing of incorporation into stress fibers or that we have distinguished distinct populations of stress fibers. We were able to detect no direct interaction of LRB-CM with actin by fluorescence photobleaching recovery (FRAP) of aqueous solutions. Interaction of LRB-CM with myosin light chain kinase also was not detected by FRAP. This suggests that the mean lifetime of the calmodulin-myosin light chain kinase complex is too short to affect the diffusion coefficient of calmodulin. We examined various fluorescent derivatives of proteins and dextrans as suitable control molecules for quantitative fluorescent analogue cytochemistry in living cells. Fluorescein isothiocyanate-dextrans were found to be preferable to all the proteins tested, since their mobilities in cytoplasm were inversely dependent on molecular size and there was no evidence of binding to intracellular components. In contrast, FRAP of LRB-CM in the cytoplasm of living 3T3 cells suggested that the analogue interacts with intracellular components with a range of affinities. The mobility of LRB-CM in the cytoplasm was sensitive to treatment of the cells with trifluoperazine, which suggests that at least some of the intracellular binding sites are specific for calmodulin in the calcium-bound form. FRAP of LRB-CM in the nuclei of living 3T3 cells indicated that the analogue was highly mobile within the nucleus but entered the nucleus from the cytoplasm much more slowly than fluorescein isothiocyanate-dextran of comparable molecular size and much more slowly than predicted from its mobility in cytoplasm.  相似文献   

13.
Organelles such as endosomes and the Golgi apparatus play a critical role in regulating signal transmission to the nucleus. Recent experiments have shown that appropriate positioning of these organelles within the intracellular space is critical for effective signal regulation. To understand the mechanism behind this observation, we consider a reaction-diffusion model of an intracellular signaling cascade and investigate the effect on the signaling of intracellular regulation in the form of a small release of phosphorylated signaling protein, kinase, and/or phosphatase. Variational analysis is applied to characterize the most effective regions for the localization of this intracellular regulation. The results demonstrate that signals reaching the nucleus are most effectively regulated by localizing the release of phosphorylated substrate protein and kinase near the nucleus. Phosphatase release, on the other hand, is nearly equally effective throughout the intracellular space. The effectiveness of the intracellular regulation is affected strongly by the characteristics of signal propagation through the cascade. For signals that are amplified as they propagate through the cascade, reactions in the upstream levels of the cascade exhibit much larger sensitivities to regulation by release of phosphorylated substrate protein and kinase than downstream reactions. On the other hand, for signals that decay through the cascade, downstream reactions exhibit larger sensitivity than upstream reactions. For regulation by phosphatase release, all reactions within the cascade show large sensitivity for amplified signals but lose this sensitivity for decaying signals. We use the analysis to develop a simple model of endosome-mediated regulation of cell signaling. The results demonstrate that signal regulation by the modeled endosome is most effective when the endosome is positioned in the vicinity of the nucleus. The present findings may explain at least in part why endosomes in many cell types localize near the nucleus.  相似文献   

14.
The delivery of macromolecules into living cells is challenging since in most cases molecules are endocytosed and remain in the endo‐lysosomal pathway where they are degraded before reaching their target. Here, a method is presented to selectively improve cell membrane permeability by nanosecond laser irradiation of gold nanorods (GNRs) with visible or near‐infrared irradiation in order to deliver proteins across the plasma membrane, avoiding the endo lysosomal pathway. GNRs were labeled with the anti‐EGFR (epidermal growth factor receptor) antibody Erbitux to target human ovarian carcinoma cells OVCAR‐3. Irradiation with nanosecond laser pulses at wavelengths of 532 nm or 730 nm is used for transient permeabilization of the cell membranes. As a result of the irradiation, the uptake of an anti‐Ki‐67 antibody was observed in about 50 % of the cells. The results of fluorescence lifetime imaging show that the GNR detached from the membrane after irradiation.  相似文献   

15.
Recently, scientific interest in electric pulses, always more intense and shorter and able to induce biological effects on both plasma and nuclear membranes, has greatly increased. Hence, microdosimetric models that include internal organelles like the nucleus have assumed increasing importance. In this work, a circuit model of the cell including the nucleus is proposed, which accounts for the dielectric dispersion of all cell compartments. The setup of the dielectric model of the nucleus is of fundamental importance in determining the transmembrane potential (TMP) induced on the nuclear membrane; here, this is demonstrated by comparing results for three different sets of nuclear dielectric properties present in the literature. The results have been compared, even including or disregarding the dielectric dispersion of the nucleus. The main differences have been found when using pulses shorter than 10 ns. This is due to the fact that the high spectral components of the shortest pulses are differently taken into account by the nuclear membrane transfer functions computed with and without nuclear dielectric dispersion. The shortest pulses are also the most effective in porating the intracellular structures, as confirmed by the time courses of the TMP calculated across the plasma and nuclear membranes. We show how dispersive nucleus models are unavoidable when dealing with pulses shorter than 10 ns because of the large spectral contents arriving above 100 MHz, i.e., over the typical relaxation frequencies of the dipolar mechanism of the molecules constituting the nuclear membrane and the subcellular cell compartments.  相似文献   

16.
Changes in intracellular temperatures reflect the activity of the cell. Thus, the tool to measure intracellular temperatures could provide valuable information about cellular status. We previously reported a method to analyze the intracellular temperature distribution using a fluorescent polymeric thermometer (FPT) in combination with fluorescence lifetime imaging microscopy (FLIM). Intracellular delivery of the FPT used in the previous study required microinjection. We now report a novel FPT that is cell permeable and highly photostable, and we describe the application of this FPT to the imaging of intracellular temperature distributions in various types of mammalian cell lines. This cell-permeable FPT displayed a temperature resolution of 0.05°C to 0.54°C within the range from 28°C to 38°C in HeLa cell extracts. Using our optimized protocol, this cell-permeable FPT spontaneously diffused into HeLa cells within 10 min of incubation and exhibited minimal toxicity over several hours of observation. FLIM analysis confirmed a temperature difference between the nucleus and the cytoplasm and heat production near the mitochondria, which were also detected previously using the microinjected FPT. We also showed that this cell-permeable FPT protocol can be applied to other mammalian cell lines, COS7 and NIH/3T3 cells. Thus, this cell-permeable FPT represents a promising tool to study cellular states and functions with respect to temperature.  相似文献   

17.
18.
We describe a new method for selective cell targeting based on the use of light-absorbing microparticles and nanoparticles that are heated by short laser pulses to create highly localized cell damage. The method is closely related to chromophore-assisted laser inactivation and photodynamic therapy, but is driven solely by light absorption, without the need for photochemical intermediates (particularly singlet oxygen). The mechanism of light-particle interaction was investigated by nanosecond time-resolved microscopy and by thermal modeling. The extent of light-induced damage was investigated by cell lethality, by cell membrane permeability, and by protein inactivation. Strong particle size dependence was found for these interactions. A technique based on light to target endogenous particles is already being exploited to treat pigmented cells in dermatology and ophthalmology. With exogenous particles, phamacokinetics and biodistribution studies are needed before the method can be evaluated against photodynamic therapy for cancer treatment. However, particles are unique, unlike photosensitizers, in that they can remain stable and inert in cells for extended periods. Thus they may be particularly useful for prelabeling cells in engineered tissue before implantation. Subsequent irradiation with laser pulses will allow control of the implanted cells (inactivation or modulation) in a noninvasive manner.  相似文献   

19.
飞秒激光是自1960年第一台激光器诞生以来,过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒激光由于脉冲持续时间短、瞬时功率大、聚焦尺寸小的特点,使得其在超快、超强和超精细领域有着广阔的应用前景。其中最重要的一个方向是飞秒激光在生物细胞方面的应用。细胞是生命活动的基本单位。所有的病源微观上都体现在细胞中细胞器的工作,所以用飞秒激光作用在病体的细胞器上达到治疗的目的,是一个很有前景的领域。由于生物大分子和水几乎不吸收近红外光,故应用近红外飞秒激光对细胞进行手术,同时可在不损伤细胞活性的前提下对细胞进行实验。这种激光手术技术已被用于对细胞内结构进行切割和蚀除。介绍了该技术在细胞领域中的一些应用,如纳米手术、基因转染和染色体切割等;还介绍了飞秒激光技术与生物细胞中主要细胞器的祛除的原理、飞秒激光细胞操作与手术系统和实验中荧光成像、多光子成像显微镜等手段。  相似文献   

20.
Physical parameters, describing the state of chromatinized DNA in living mammalian cells, were revealed by in situ fluorescence dynamic properties of ethidium in its free and intercalated states. The lifetimes and anisotropy decays of this cationic chromophore were measured within the nuclear domain, by using the ultra-sensitive time-correlated single-photon counting technique, confocal microscopy, and ultra-low probe concentrations. We found that, in living cells: 1) free ethidium molecules equilibrate between extracellular milieu and nucleus, demonstrating that the cation is naturally transported into the nucleus; 2) the intercalation of ethidium into chromatinized DNA is strongly inhibited, with relaxation of the inhibition after mild (digitonin) cell treatment; 3) intercalation sites are likely to be located in chromatin DNA; and 4) the fluorescence anisotropy relaxation of intercalated molecules is very slow. The combination of fluorescence kinetic and fluorescence anisotropy dynamics indicates that the torsional dynamics of nuclear DNA is highly restrained in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号