首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative damage increases with age in a canine model of human brain aging   总被引:12,自引:0,他引:12  
We assayed levels of lipid peroxidation, protein carbonyl formation, glutamine synthetase (GS) activity and both oxidized and reduced glutathione to study the link between oxidative damage, aging and beta-amyloid (Abeta) in the canine brain. The aged canine brain, a model of human brain aging, naturally develops extensive diffuse deposits of human-type Abeta. Abeta was measured in immunostained prefrontal cortex from 19 beagle dogs (4-15 years). Increased malondialdehyde (MDA), which indicates increased lipid peroxidation, was observed in the prefrontal cortex and serum but not in cerebrospinal fluid (CSF). Oxidative damage to proteins (carbonyl formation) also increased in brain. An age-dependent decline in GS activity, an enzyme vulnerable to oxidative damage, and in the level of glutathione (GSH) was observed in the prefrontal cortex. MDA level in serum correlated with MDA accumulation in the prefrontal cortex. Although 11/19 animals exhibited Abeta, the extent of deposition did not correlate with any of the oxidative damage measures, suggesting that each form of neuropathology accumulates in parallel with age. This evidence of widespread oxidative damage and Abeta deposition is further justification for using the canine model for studying human brain aging and neurodegenerative diseases.  相似文献   

2.
摘要 目的:研究齐墩果酸(Oleanolic Acid,OA)对APP/PS-1双转基因阿尔茨海默病(Alzheimer''s disease,AD)小鼠模型神经保护作用及机制。方法:选取6月龄APP/PS-1雄性小鼠21只,随机分为模型组(0.5% CMC-Na)、阳性组(多奈哌齐组,0.7 mg?kg-1)、齐墩果酸组(10 mg?kg-1)每组7只,6月龄同背景SPF级C57BL/6小鼠7只为对照组。灌胃8周之后通过Morris水迷宫实验观察小鼠学习记忆能力的改变,HE染色观察神经元细胞形态,ELISA检测血清中Aβ1-42含量;免疫组化检测Aβ1-42、APP、Iba1蛋白表达情况;Western blot检测APP、Iba1蛋白表达水平。结果:(1)对照组,模型组,阳性组及齐墩果酸组进入有效区域次数分别为7.00±2.09,1.00±0.89,3.67±1.97,4.33±2.50,与模型组相比,对照组,阳性组,齐墩果酸组均有统计学意义(P<0.05);(2)血清Aβ1-42含量按上述顺序依次为4.98±0.25,2.50±0.66,4.63±0.73,4.36±0.97,与模型组相比,对照组,阳性组,齐墩果酸组均有统计学意义(P<0.05);(3)免疫组化结果显示与模型组相比,对照组,阳性组,齐墩果酸组Aβ1-42、APP、Iba1蛋白阳性细胞数减少;(4)WB结果:对照组,模型组,阳性组,齐墩果酸组APP蛋白相对表达量分别为0.52±0.17,1.38±0.35,0.89±0.25,0.93±0.27;这四组的IBA1蛋白相对表达量分别为0.98±0.34,1.79±0.74,1.06±0.61,0.88±0.49,与模型组相比,野生对照组,阳性组,齐墩果酸组APP、IBA1蛋白相对含量有统计学意义(P<0.05)。结论:齐墩果酸组可以改善APP/PS-1模型小鼠记忆力及认知功能,降低海马神经元的损伤,并通过下调Aβ1-42、APP、Iba1蛋白的表达水平来发挥保护神经作用。  相似文献   

3.
Nr2e1 encodes a stem cell fate determinant of the mouse forebrain and retina. Abnormal regulation of this gene results in retinal, brain, and behavioral abnormalities in mice. However, little is known about the functionality of human NR2E1. We investigated this functionality using a novel knock-in humanized-mouse strain carrying a single-copy bacterial artificial chromosome (BAC). We also documented, for the first time, the expression pattern of the human BAC, using an NR2E1-lacZ reporter strain. Unexpectedly, cerebrum and olfactory bulb hypoplasia, hallmarks of the Nr2e1-null phenotype, were not fully corrected in animals harboring one functional copy of human NR2E1. These results correlated with an absence of NR2E1-lacZ reporter expression in the dorsal pallium of embryos and proliferative cells of adult brains. Surprisingly, retinal histology and electroretinograms demonstrated complete correction of the retina-null phenotype. These results correlated with appropriate expression of the NR2E1-lacZ reporter in developing and adult retina. We conclude that the human BAC contained all the elements allowing correction of the mouse-null phenotype in the retina, while missing key regulatory regions important for proper spatiotemporal brain expression. This is the first time a separation of regulatory mechanisms governing NR2E1 has been demonstrated. Furthermore, candidate genomic regions controlling expression in proliferating cells during neurogenesis were identified.  相似文献   

4.
Mitochondrial reactive oxygen species (ROS) have been implicated in spermatogenic damage, although direct in vivo evidence is lacking. We recently generated a mouse in which the inner mitochondrial membrane peptidase 2-like (Immp2l) gene is mutated. This Immp2l mutation impairs the processing of signal peptide sequences from mitochondrial cytochrome c1 and glycerol phosphate dehydrogenase 2. The mitochondria from mutant mice generate elevated levels of superoxide ion, which causes age-dependent spermatogenic damage. Here we confirm age-dependent spermatogenic damage in a new cohort of mutants, which started at the age of 10.5 months. Compared with age-matched controls, protein carbonyl content was normal in testes of 2- to 5-month-old mutants, but significantly elevated in testes of 13-month-old mutants, indicating elevated oxidative stress in the testes at the time of impaired spermatogenesis. Testicular expression of superoxide dismutases was not different between control and mutant mice, whereas that of catalase was increased in young and old mutants. The expression of cytosolic glutathione peroxidase 4 (phospholipid hydroperoxidase) in testes was significantly reduced in 13-month-old mutants, concomitant with impaired spermatogenesis. Apoptosis of all testicular populations was increased in mutant mice with spermatogenic damage. The mitochondrial DNA (mtDNA) mutation rate in germ cells of mutant mice with impaired spermatogenesis was unchanged, excluding a major role of mtDNA mutation in ROS-mediated spermatogenic damage. Our data show that increased mitochondrial ROS are one of the driving forces for spermatogenic impairment.  相似文献   

5.

Background

The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome’) strategy to expand our understanding of human gene regulation in vivo.

Results

In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear.

Conclusions

We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.
  相似文献   

6.
The nuclear morphology of certain neuronal populations from the mutant mouse, ichthyosis, is distinct from wild-type strains of mice. The granule cells of the cerebellum, cochlear nucleus, and olfactory bulb in ichthyosis mice have a much greater tendency for centralized clumping of nuclear heterochromatin. In the early postnatal nervous system many cells in migratory and germinal regions of the brain also express the ichthyosis phenotype. The retention of the ichthyosis phenotype in neurons of chimeric mice is documented. The prevalent expression of the ichthyosis phenotype in postnatal migratory and germinal regions of the brain would be particularly useful for studying cell interactions in the developing brain.  相似文献   

7.
The rate of repair of radiation-induced DNA damage in proliferating rat epidermal cells diminished progressively with increasing age of the animal. The dorsal skin was irradiated with 1200 rad of 0.8 MeV electrons at various ages, and the amount of DNA damage was determined as a function of time after irradiation by the method of alkaline unwinding followed by S1 nuclease digestion. The amount of DNA damage immediately after irradiation was not age dependent, while the rate of damage removal from the DNA decreased with increasing age. By fitting an exponential function to the relative amount of undamaged DNA as a function of time after irradiation, DNA repair halftimes of 20, 27, 69 and 107 min were obtained for 28, 100-, 200-, and 400-day-old animals, respectively.  相似文献   

8.
Ku is an abundant heterodimeric nuclear protein, consisting of 70- and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP-ribose) polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-/Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.  相似文献   

9.
Deng CX 《Mutation research》2001,477(1-2):183-189
Germline mutations in Brca1 are responsible for most cases of familial breast and ovarian cancers, but somatic mutations in the gene are rarely detected in sporadic tumors. Moreover, mouse embryos carrying Brca1-null mutations or homozygous deletions of Brca1 exon 11 of (Brca1Delta11/Delta11) die during gestation due to proliferation defects, raising questions about the mechanisms by which Brca1 represses tumor formation. Molecular analysis reveals that these Brca1 mutations cause hypersensitivity to gamma-irradiation and chromosomal abnormalities in embryos and embryonic fibroblast cells (MEFs). Notably, Brca1Delta11/Delta11 MEFs maintain an intact G1-S checkpoint, but are defective in G2-M checkpoint control. They also contain multiple, functional centrosomes, which lead to unequal chromosome segregation and aneuploidy. These data uncover an essential role for Brca1 in maintaining genetic stability through regulation of centrosome duplication and G2-M checkpoint, and provide a molecular basis for its role in tumorigenesis. Finally, we show that conditional mutation of Brca1 in mammary epithelium causes increased apoptosis and abnormal ductal development. Mammary tumor formation in mutant mice occurs after long latency and is associated with p53 mutations. These results are consistent with a model that Brca1 acts as a caretaker gene, whose absence does not directly initiate tumorigenesis, instead, causes genetic instability, which triggers further alterations and ultimately leads to tumor formation.  相似文献   

10.
11.
Pathological features of amyotrophic lateral sclerosis (ALS) include, in addition to selective motor neuron (MN) degeneration, the occurrence of protein aggregates, mitochondrial dysfunction and astrogliosis. SOD1 mutations cause rare familial forms of ALS and have provided the most widely studied animal models. Relatively recent studies implicating another protein, TDP-43, in familial and sporadic forms of ALS have led to the development of new animal models. More recently, mutations in the valosin-containing protein (VCP) gene linked to the human genetic disease, Inclusion Body Myopathy associated with Paget''s disease of bone and frontotemporal dementia (IBMPFD), were found also to be associated with ALS in some patients. A heterozygous knock-in VCP mouse model of IBMPFD (VCPR155H/+) exhibited muscle, bone and brain pathology characteristic of the human disease. We have undertaken studies of spinal cord pathology in VCPR155H/+ mice and find age-dependent degeneration of ventral horn MNs, TDP-43-positive cytosolic inclusions, mitochondrial aggregation and progressive astrogliosis. Aged animals (∼24–27 months) show electromyography evidence of denervation consistent with the observed MN loss. Although these animals do not develop rapidly progressive fatal ALS-like disease during their lifespans, they recapitulate key pathological features of both human disease and other animal models of ALS, and may provide a valuable new model for studying events preceding onset of catastrophic disease.  相似文献   

12.
A selective loss of satellite DNA was found to occur to different extents as a function of tissue and age of mice using several common DNA extraction and purification procedures. This result emphasizes a serious problem that may be encountered in comparative studies of DNA structure and composition if selective loss of specific DNA sequences occurs. We have developed a DNA extraction and purification procedure that is simple and reliable and gives a high percent DNA yield, which substantially reduces the selective loss of heterochromatin DNA sequences. The method features a centrifugation step of a proteolytic digest of chromatin in 2.4 M CsCl. Percent DNA yield of 82–98% are routinely obtained with no apparent loss of satellite DNA sequences from different tissues or ages of mice. Utilizing this method, percent satellite DNA was found to remain essentially constant at 11 ± 1% for spleen, kidney, and brain tissues obtained from mice of 10–780 days of age. However, for liver, percent satellite DNA remained at about 7–8% from 10 to 300 days of age and then increased to about 12–13% from 300 to 600 days of age. During this latter time interval (300–600 days), an increase of DNA per nucleus of about 3-fold occurred, due to the formation of tetra- and octaploid cell types. A steady loss in the total number of nuclei per gram of liver as a function of age was also found. These two opposing effects resulted in a nearly constant amount of DNA per gram and per organ for liver throughout the lifespan of the mouse.  相似文献   

13.
A growing body of evidence suggests a relationship between oxidative stress and beta-amyloid (Abeta) peptide accumulation, a hallmark in the pathogenesis of Alzheimer's disease (AD). However, a direct causal relationship between oxidative stress and Abeta pathology has not been established in vivo. Therefore, we crossed mice with a knockout of one allele of manganese superoxide dismutase (MnSOD), a critical antioxidant enzyme, with Tg19959 mice, which overexpress a doubly mutated human beta-amyloid precursor protein (APP). Partial deficiency of MnSOD, which is well established to cause elevated oxidative stress, significantly increased brain Abeta levels and Abeta plaque burden in Tg19959 mice. These results indicate that oxidative stress can promote the pathogenesis of AD and further support the feasibility of antioxidant approaches for AD therapy.  相似文献   

14.
Viability of human diploid cells as a function of in vitro age   总被引:10,自引:0,他引:10  
The fraction of cell capable of division was determined for (1) population of the human diploid cell strains, WI38 after different numbers of subcultivations in vitro and (2) a single population of WI38 cells at intervals throughout its entire in vitro lifespan. In both cases the percentage of cells capable of division decreased with increasing age in tissue culture. The rate and the magnitude of the decrease is sufficient to account for the limited in vitro lifespan reported by other investigators. Furthermore, the decrease in the fraction of cells capable of division in similar in some respects of senescence among human populations.  相似文献   

15.
Siah1a has been implicated in numerous signaling pathways because of its ability to induce ubiquitin-mediated degradation of many protein substrates. Siah1a knockout mice are growth-retarded, exhibit early lethality, and display spermatogenic defects. In this study we identified a striking low bone volume phenotype in these mice (trabecular bone volume was halved compared with wild type mice), linking Siah1a to bone metabolism for the first time. Markers of bone formation, including osteoblast numbers and osteoid volume, were decreased by up to 40%, whereas the number of osteoclasts was more than doubled in Siah1a mutant mice. However, ex vivo osteoclast formation occurs normally and hematopoietic osteoclast progenitor cell types were present in normal numbers in Siah1a mutant mice. Moreover, adoptive transfer of Siah1a mutant bone marrow into wild type mice failed to reproduce the osteopenia or increased osteoclast numbers observed in mutant mice. Although ex vivo osteoblast colony formation was normal in Siah1a mutant mice, mineralization from these cells was elevated in cultures from Siah1a mutant mice, which may explain the reduction in osteoid volume seen in vivo. These findings suggest that although Siah1a is clearly essential for normal bone metabolism, the bone defect in Siah1a mutant mice is not due to cell-autonomous requirements for Siah1a in osteoblast or osteoclast formation. We propose that bone metabolism defects in Siah1a mutant mice are secondary to an alteration in an unidentified systemic, paracrine, or metabolic factor in these mice.  相似文献   

16.
As the outermost layer on aerial tissues of the primary plant body, the cuticle plays important roles in plant development and physiology. The major components of the cuticle are cutin and cuticular wax, both of which are composed primarily of fatty acid derivatives synthesized in the epidermal cells. Long-chain acyl-CoA synthetases (LACS) catalyze the formation of long-chain acyl-CoAs and the Arabidopsis genome contains a family of nine genes shown to encode LACS enzymes. LACS2 is required for cutin biosynthesis, as revealed by previous investigations on lacs2 mutants. Here, we characterize lacs1 mutants of Arabidopsis that reveals a role for LACS1 in biosynthesis of cuticular wax components. lacs1 lacs2 double-mutant plants displayed pleiotropic phenotypes including organ fusion, abnormal flower development and reduced seed set; phenotypes not found in either of the parental mutants. The leaf cuticular permeability of lacs1 lacs2 was higher than that of either lacs1 or lacs2 single mutants, as determined by measurements of chlorophyll leaching from leaves immersed in 80% ethanol, staining with toluidine blue dye and direct measurements of water loss. Furthermore, lacs1 lacs2 mutant plants are highly susceptible to drought stress. Our results indicate that a deficiency in cuticular wax synthesis and a deficiency in cutin synthesis together have compounding effects on the functional integrity of the cuticular barrier, compromising the ability of the cuticle to restrict water movement, protect against drought stress and prevent organ fusion.  相似文献   

17.
18.
Binding of (3H)-atropine to synaptosomal fractions prepared from cerebral and cerebellar cortices of young, adult and old male and female rats were studied. Picomoles of labelled atropine bound/mg protein was highest in the cerebral cortex of young rats and decreased with increasing age in both sexes, whereas in cerebellar cortex the peak binding was in adult rats. Acetylcholinesterase activity of the same fractions showed corresponding changes with age.  相似文献   

19.
Oxidative phosphorylation as a function of temperature   总被引:4,自引:0,他引:4  
  相似文献   

20.
After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation without major differences in morphological brain damage compared to young.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号