首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zeng R  Li C  Li N  Wei L  Cui Y 《Cytokine》2011,53(1):1-7
Respiratory syncytial virus (RSV) is the primary cause of serious lower respiratory tract illness in infants and young children worldwide. The mechanism is largely unknown. RSV stimulates airway epithelial cells and resident leukocytes to release cytokines. Cytokines and chemokines involved in host response to RSV infection are thought to play a central role in the pathogenesis. In addition, RSV infection early in life has been associated with the development of asthma in later childhood. It is likely that the persistence of cytokines and chemokines in fully recovered patients with RSV in the long term can provide a substratum for the development of subsequent asthma. This review describes the genetic factors in cytokines and chemokines associated with severity of RSV disease, cytokines and chemokines synthesis in RSV infection, and the role of these innate immune components in RSV-associated asthma.  相似文献   

2.
Human metapneumovirus (HMPV) is a recently discovered pathogen first identified in respiratory specimens from young children suffering from clinical respiratory syndromes ranging from mild to severe lower respiratory tract illness. HMPV has worldwide prevalence, and is a leading cause of respiratory tract infection in the first years of life, with a spectrum of disease similar to respiratory syncytial virus (RSV). The disease burden associated with HMPV infection has not been fully elucidated; however, studies indicate that HMPV may cause upper or lower respiratory tract illness in patients between ages 2 months and 87 years, may co-circulate with RSV, and HMPV infection may be associated with asthma exacerbation. The mechanisms and effector pathways contributing to immunity or disease pathogenesis following infection are not fully understood; however, given the clinical significance of HMPV, there is a need for a fundamental understanding of the immune and pathophysiological processes that occur following infection to provide the foundation necessary for the development of effective vaccine or therapeutic intervention strategies. This review provides a current perspective on the processes associated with HMPV infection, immunity, and disease pathogenesis.  相似文献   

3.
Primary biliary cirrhosis (PBC) is a cholestatic liver disease characterised by the autoimmune destruction of the small intrahepatic bile ducts. The disease has an unpredictable clinical course, but may progress to fibrosis and cirrhosis. Although medical treatment with urseodeoxycholic acid is largely successful, some patients may progress to liver failure requiring liver transplantation. PBC is characterised by the presence of disease specific anti-mitochondrial (AMA) antibodies, which are pathognomonic for PBC development. The disease demonstrates an overwhelming female preponderance and virtually all women with PBC present in middle age. The reasons for this are unknown; however several environmental and immunological factors may be involved. As the immune systems ages, it become less self tolerant, and mounts a weaker response to pathogens, possibly leading to cross reactivity or molecular mimicry. Some individuals display immunological changes which encourage the development of autoimmune disease. Risk factors implicated in PBC include recurrent urinary tract infection in females, as well as an increased prevalence of reproductive complications. These risk factors may work in concert with and possibly even accelerate, immune system ageing, contributing to PBC development. This review will examine the changes that occur in the immune system with ageing, paying particular attention to those changes which contribute to the development of autoimmune disease with increasing age. The review also discusses risk factors which may account for the increased female predominance of PBC, such as recurrent UTI and oestrogens.  相似文献   

4.
Chronic airway diseases such as asthma are linked to oxidative environmental factors and are associated with increased production of reactive oxygen species (ROS). Therefore, it is commonly assumed that oxidative stress is an important contributing factor to asthma disease pathogenesis and that antioxidant strategies may be useful in the treatment of asthma. A primary source of ROS production in biological systems is NADPH oxidase (NOX), originally associated primarily with inflammatory cells but currently widely appreciated as an important enzyme system in many cell types, with a wide array of functional properties ranging from antimicrobial host defense to immune regulation and cell proliferation, differentiation and apoptosis. Given the complex nature of asthma disease pathology, involving many lung cell types that all express NOX homologs, it is not surprising that the contributions of NOX-derived ROS to various aspects of asthma development and progression are highly diverse and multifactorial. It is the purpose of the present review to summarize the current knowledge with respect to the functional aspects of NOX enzymes in various pulmonary cell types, and to discuss their potential importance in asthma pathogenesis. This article is part of a Special Issue entitled: Biochemistry of Asthma.  相似文献   

5.
Chlamydiae are medically important bacteria responsible for a wide range of human infections and diseases. Repeated episodes of infection promote chronic inflammation associated with detrimental immune system-mediated pathologic changes. However, the true nature of chlamydial pathogenesis may encompass repeated infection superimposed upon persistent infection, which would allow for heightened immune reactivity. During the course of chlamydial infection, numerous host elaborated factors with inhibitory or modifying effects may cause alterations in the chlamydia-host cell relationship such that the organism is maintained in a nonproductive stage of growth. Abnormal or persistent chlamydiae have been recognized under a variety of cell culture systems. The numerous factors associated with altered growth suggest an innate flexibility in the developmental cycle of chlamydiae. This review evaluates in vitro studies of chlamydial persistence and correlates these model systems to features of natural chlamydial disease.  相似文献   

6.

Background

Viral respiratory infection has long been known to influence the occurrence of asthma exacerbations. Over the last 20 years much effort has been put into clarifying the role that viral respiratory infections play in the eventual development of asthma.

Scope of review

In this review we give a general background of the role of viruses in the processes of asthma exacerbation and asthma induction. We review recent additions to the literature in the last 3 years with particular focus on clinical and epidemiologic investigations of influenza, rhinovirus, bocavirus, respiratory syncytial virus, and metapneumovirus.

Major conclusions

The development of asthma emerges from a complex interaction of genetic predisposition and environmental factors with viral infection likely playing a significant role in the effect of environment on asthma inception. This article is part of a Special Issue entitled: Biochemistry of Asthma.

General significance

Further understanding of the role that viruses play in asthma exacerbation and inception will contribute to decreased asthma morbidity in the future. This article is part of a Special Issue entitled: Biochemistry of Asthma.  相似文献   

7.
8.
Genetic variation in specific G-protein coupled receptors (GPCRs) is associated with a spectrum of respiratory disease predispositions and drug response phenotypes. Although certain GPCR gene variants can be disease-causing through the expression of inactive, overactive, or constitutively active receptor proteins, many more GPCR gene variants confer risk for potentially deleterious endophenotypes. Endophenotypes are traits, such as bronchiole hyperactivity, atopy, and aspirin intolerant asthma, which have a strong genetic component and are risk factors for a variety of more complex outcomes that may include disease states. GPCR genes implicated in asthma endophenotypes include variants of the cysteinyl leukotriene receptors (CYSLTR1 and CYSLTR2), and prostaglandin D2 receptors (PTGDR and CRTH2), thromboxane A2 receptor (TBXA2R), beta2-adrenergic receptor (ADRB2), chemokine receptor 5 (CCR5), and the G protein-coupled receptor associated with asthma (GPRA). This review of the contribution of variability in these genes places the contribution of the cysteinyl leukotriene system to respiratory endophenotypes in perspective. The genetic variant(s) of receptors that are associated with endophenotypes are discussed in the context of the extent to which they contribute to a disease phenotype or altered drug efficacy.  相似文献   

9.
抑郁症是一种与炎症反应、神经免疫关系密切的神经精神疾病。微生物,尤其是肠道菌群,则与人类免疫调节机制形成、感染和炎症反应息息相关。研究已证实,肠道菌群在炎症性肠病、哮喘等自身免疫性疾病的发生发展过程中起了相当大的作用。这些探讨非感染性疾病与微生物的关系的研究和理论形成了卫生学假说,亦即"老朋友"假说。目前,很多研究正在运用卫生学假说的观念,探索肠道菌群与抑郁症发生、发展、预防和治疗之间的联系,并取得了一些进展。本文重点就肠道菌群失调是否能够促进抑郁症发生及其可能机制做一综述。  相似文献   

10.
Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species (ROS), including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species and how these effects are likely to contribute to vascular dysfunction and disease.  相似文献   

11.
Tinea pedis is a chronic fungal infection of the feet, very often observed in patients who are immuno-suppressed or have diabetes mellitus. The practicing allergist may be called upon to treat this disease for various reasons. Sometimes tinea infection may be mistaken for atopic dermatitis or allergic eczema. In other patients, tinea pedis may complicate allergy and asthma and may contribute to refractory atopic disease. Patients with recurrent cellulitis may be referred to the allergist/immunologist for an immune evaluation and discovered to have tinea pedis as a predisposing factor. From a molecular standpoint, superficial fungal infections may induce a type2 T helper cell response (Th2) that can aggravate atopy. Th2 cytokines may induce eosinophil recruitment and immunoglobulin E (IgE) class switching by B cells, thereby leading to exacerbation of atopic conditions. Three groups of fungal pathogens, referred to as dermatophytes, have been shown to cause tinea pedis: Trychophyton sp, Epidermophyton sp, and Microsporum sp. The disease manifests as a pruritic, erythematous, scaly eruption on the foot and depending on its location, three variants have been described: interdigital type, moccasin type, and vesiculobullous type. Tinea pedis may be associated with recurrent cellulitis, as the fungal pathogens provide a portal for bacterial invasion of subcutaneous tissues. In some cases of refractory asthma, treatment of the associated tinea pedis infection may induce remission in airway disease. Very often, protracted topical and/or oral antifungal agents are required to treat this often frustrating and morbid disease. An evaluation for underlying immuno-suppression or diabetes may be indicated in patients with refractory disease.  相似文献   

12.
A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12-15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.  相似文献   

13.
14.
Asthma and associated phenotypes are complex traits most probably caused by an interaction of multiple disease susceptibility genes and environmental factors. Major achievements have occurred in identifying chromosomal regions and polymorphisms in candidate genes linked to or associated with asthma, atopic dermatitis, IgE levels and response to asthma therapy. The aims of this review are to explain the methodology of genetic studies of multifactorial diseases, to summarize chromosomal regions and polymorphisms in candidate genes linked to or associated with asthma and associated traits, to list genetic alterations that may alter response to asthma therapy, and to outline genetic factors that may render individuals more susceptible to asthma and atopy due to environmental changes.  相似文献   

15.
Asthma and associated phenotypes are complex traits most probably caused by an interaction of multiple disease susceptibility genes and environmental factors. Major achievements have occurred in identifying chromosomal regions and polymorphisms in candidate genes linked to or associated with asthma, atopic dermatitis, IgE levels and response to asthma therapy. The aims of this review are to explain the methodology of genetic studies of multifactorial diseases, to summarize chromosomal regions and polymorphisms in candidate genes linked to or associated with asthma and associated traits, to list genetic alterations that may alter response to asthma therapy, and to outline genetic factors that may render individuals more susceptible to asthma and atopy due to environmental changes.  相似文献   

16.
Trypanosomosis is the most economically important disease constraint to livestock productivity in sub-Saharan Africa and has significant negative impact in other parts of the world. Livestock are an integral component of farming systems and thus contribute significantly to food and economic security in developing countries. Current methods of control for trypanosomosis are inadequate to prevent the enormous socioeconomic losses resulting from this disease. A vaccine has been viewed as the most desirable control option. However, the complexity of the parasite's antigenic repertoire made development of a vaccine based on the variable surface glycoprotein coat unlikely. As a result, research is now focused on identifying invariant trypanosome components as potential targets for interrupting infection or infection-mediated disease. Immunosuppression appears to be a nearly universal feature of infection with African trypanosomes and thus may represent an essential element of the host-parasite relationship, possibly by reducing the host's ability to mount a protective immune response. Antibody, T cell and macrophage/monocyte responses of infected cattle are depressed in both trypanosusceptible and trypanotolerant breeds of cattle. This review describes the specific T cell and monocyte/macrophage functions that are altered in trypanosome-infected cattle and compares these disorders with those that have been described in the murine model of trypanosomosis. The identification of parasite factors that induce immunosuppression and the mechanisms that mediate depressed immune responses might suggest novel disease intervention strategies.  相似文献   

17.
Alvarez R  Tripp RA 《Journal of virology》2005,79(10):5971-5978
Human metapneumovirus (HMPV), recently identified in isolates from children hospitalized with acute respiratory tract illness, is associated with clinical diagnosis of pneumonia, asthma exacerbation, and acute bronchiolitis in young children. HMPV has been shown to cocirculate with respiratory syncytial virus (RSV) and mediate clinical disease features similarly to RSV. Little is known regarding the pathophysiology or immune response associated with HMPV infection; thus, animal models are needed to better understand the mechanisms of immunity and disease pathogenesis associated with infection. In this study, we examine features of the innate and adaptive immune response to HMPV infection in a BALB/c mouse model. Primary HMPV infection elicits weak innate and aberrant adaptive immune responses characterized by induction of a Th2-type cytokine response at later stages of infection that coincides with increased interleukin-10 expression and persistent virus replication in the lung. Examination of the cytotoxic T lymphocyte and antibody response to HMPV infection revealed a delayed response, but passive transfer of HMPV-specific antibodies provided considerable protection. These features are consistent with virus persistence and indicate that the immune response to HMPV is unique compared to the immune response to RSV.  相似文献   

18.
Wald O  Weiss ID  Galun E  Peled A 《Cytokine》2007,39(1):50-62
Hepatitis C virus infection and its associated liver inflammatory disease is a major global health problem affecting over 170 million people worldwide. Following viral infection, multiple pro-inflammatory mediators contribute to recruitment of immune cells to the liver and to the generation of an anti-viral immune response. However, when this vigorous immune response fails to eliminate the virus, chronic infection is established. This in turn, results in an ongoing process of inflammation, regeneration and fibrosis that in many cases leads to the development of cirrhosis and of hepatocellular carcinoma. Multiple recent publications mark chemokines and their receptors as key players in leukocyte recirculation through the inflamed liver. Furthermore, chemokines may also be involved in liver regeneration, fibrosis, and in malignant transformation, which is induced by the persistence of inflammation. Accumulating data indicates that distinct chemokines and chemokine receptors may be associated with different stages of the chronic hepatitis C virus infection-associated liver disease. Multiple small molecules and peptide antagonizing chemokines and their receptors are in advanced phase 3 and phase 2 clinical trials. In the near future, such drugs are expected to enter clinical use raising the question whether they may be applicable for the treatment of chronic viral infection-associated liver disease. In this review, recent advances in understanding the role of chemokines and their receptors in the pathogenesis of chronic viral infection-associated liver disease are presented. Furthermore, the clinical implications of these novel findings, which mark chemokines as prognostic markers and therapeutic targets for immune-modulation during chronic liver viral infection, are documented.  相似文献   

19.
Asthma is a complex disorder in which major genetic and environmental factors interact to initiate the disease and propagate it as a chronic relapsing disorder. Until recently, genetic factors implicated in the disease pathogenesis have been restricted to variants in known molecules involved in the inflammatory or remodelling pathways. This review discusses evidence for a new susceptibility gene for asthma, ADAM33, which was identified by positional cloning and shown to be selectively expressed in mesenchymal but not immune or inflammatory cells. ADAM33 belongs to a family of membrane-anchored metalloproteinases that also have fusagenic, adhesion and intracellular signalling properties. ADAM33 might play a key role in predisposing to the reduced lung function characteristic of asthma, possibly by influencing airway wall remodelling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号