首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The BMP signaling and in vivo bone formation   总被引:12,自引:0,他引:12  
Cao X  Chen D 《Gene》2005,357(1):1-8
Bone morphogenetic proteins (BMPs) are multi-functional growth factors that belong to the transforming growth factor beta (TGFbeta) superfamily. The roles of BMPs in embryonic development and cellular functions in postnatal and adult animals have been extensively studied in recent years. Signal transduction studies have revealed that Smads 1, 5 and 8 are the immediate downstream molecules of BMP receptors and play a central role in BMP signal transduction. Studies from transgenic and knockout mice and from animals and humans with naturally occurring mutations in BMPs and their signaling molecules have shown that BMP signaling plays critical roles in bone and cartilage development and postnatal bone formation. BMP activities are regulated at different molecular levels. Tissue-specific knockout of a specific BMP ligand, a subtype of BMP receptors or a specific signaling molecule is required to further determine the specific role of a BMP ligand, receptor or signaling molecule in a particular tissue.  相似文献   

2.
New DC  Tsim ST  Wong YH 《Neuro-Signals》2003,12(2):59-70
The isolation and characterization of multiple melatonin receptors in a wide range of tissues and cells signifies the functional diversity of melatonin. In different cellular environments, melatonin can regulate distinct second messengers or even positively or negatively regulate the same signal transduction pathway. The capacity by which melatonin receptors modulate the activities of various effector molecules is determined by the complement of signaling components present in any particular cell type. The specific interactions between many signaling molecules have been discerned in an increasing number of cellular systems and this information is being used to explain the physiological actions of melatonin. This review will attempt to summarize recent research by many groups that has revealed numerous subtleties of the melatonin-coupled signaling pathways.  相似文献   

3.
4.
Many activities of cells are controlled by cell-surface receptors, which in response to ligands, trigger intracellular signaling reactions that elicit cellular responses. A hallmark of these signaling reactions is the reversible nucleation of multicomponent complexes, which typically begin to assemble when ligand-receptor binding allows an enzyme, often a kinase, to create docking sites for signaling molecules through chemical modifications, such as tyrosine phosphorylation. One function of such docking sites is the co-localization of enzymes with their substrates, which can enhance both enzyme activity and specificity. The directed assembly of complexes can also influence the sensitivity of cellular responses to ligand-receptor binding kinetics and determine whether a cellular response is up- or downregulated in response to a ligand stimulus. The full functional implications of ligand-stimulated complex formation are difficult to discern intuitively. Complex formation is governed by conditional interactions among multivalent signaling molecules and influenced by quantitative properties of both the components in a system and the system itself. Even a simple list of the complexes that can potentially form in response to a ligand stimulus is problematic because of the number of ways signaling molecules can be modified and combined. Here, we review the role of multicomponent complexes in signal transduction and advocate the use of mathematical models that incorporate detail at the level of molecular domains to study this important aspect of cellular signaling.  相似文献   

5.
Nuclear receptors comprise a large family of proteins that shares a common structure and mechanism of action. Members of this family, first cloned 20 years ago, are regulated by small lipophilic signaling molecules such as steroid hormones, retinoids and thyroid hormone. More recently, the characterization of proteins that resemble nuclear receptors (referred to as orphan receptors) has resulted in the determination of novel signaling pathways. However, many orphan-receptor ligands remain unidentified, and recent structural studies of the binding domains for orphan-receptor ligands suggest that not all of these receptors use ligand binding in a classical way. Notably, it is now evident that some orphan receptors lack the capacity for ligand binding, which suggests that they are regulated by alternative, ligand-independent mechanisms.  相似文献   

6.
A particular interest is nowadays given to natural antioxidants occurring in foods which can reduce the risk of several diseases through their protective effect. The genus Limonium is widely distributed in different salt regions of Tunisia and known in traditional medicine for the presence of highly effective viral and bacterial replication inhibitors. Limonium leaves have possible beneficial effects on human health for their antioxidant activities and free radical scavenging abilities. To exploit the potential of plants from extreme environments as new sources of natural antioxidants, we studied the extracts from leaves of eight Limonium species growing in extreme environments in Tunisia. Antioxidant molecules (polyphenols, flavonoids, flavonols, ascorbate, tocopherols), in vitro (DPPH, ORAC) and ex vivo antioxidant potential on human erythrocytes, antioxidant enzymes activities (superoxide dismutase, peroxidases, glutathione reductase) were evaluated to identify the species with the best antioxidant capacity. The results showed variability among the species considered in function of the environmental conditions of their natural biotopes, as for the antioxidants measured. In particular, L. vulgare from Oued Rane biotope, characterized by dryness and high temperatures, was the species with the highest enzymatic activity and antioxidant capacity, making it interesting as possible edible halophyte plant or as food complement.  相似文献   

7.
8.
9.
10.
Accumulating evidence supports the hypothesis that brain iron misregulation and oxidative stress (OS), resulting in reactive oxygen species (ROS) generation from H2O2 and inflammatory processes, trigger a cascade of events leading to apoptotic/necrotic cell death in neurodegenerative disorders, such as Parkinson's (PD), Alzheimer's (AD) and Huntington's diseases, and amyotrophic lateral sclerosis (ALS). Thus, novel therapeutic approaches aimed at neutralization of OS-induced neurotoxicity, support the application of ROS scavengers, transition metals (e.g. iron and copper) chelators and non-vitamin natural antioxidant polyphenols, in monotherapy, or as part of antioxidant cocktail formulation for these diseases. Both experimental and epidemiological evidence demonstrate that flavonoid polyphenols, particularly from green tea and blueberries, improve age-related cognitive decline and are neuroprotective in models of PD, AD and cerebral ischemia/reperfusion injuries. However, recent studies indicate that the radical scavenger property of green tea polyphenols is unlikely to be the sole explanation for their neuroprotective capacity and in fact, a wide spectrum of cellular signaling events may well account for their biological actions. In this article, the currently established mechanisms involved in the beneficial health action and emerging studies concerning the putative novel molecular neuroprotective activity of green tea and its major polyphenol (-)-epigallocatechin-3-gallate (EGCG), will be reviewed and discussed.  相似文献   

11.
12.
Stem cells are defined by their intrinsic capacity to self-renew and differentiate. Cancer stem cells retain both these features but have lost homeostatic mechanisms which maintain normal cell numbers. The canonical Wnt/beta-catenin signaling pathway plays a central role in modulating the delicate balance between stemness and differentiation in several adult stem cell niches such as the hair follicles in the skin, the mammary gland, and the intestinal crypt. Accordingly, constitutive Wnt signaling activation, resulting from mutations in genes encoding its downstream components, underlies tumorigenesis in these tissues. In the majority of sporadic colorectal cancer cases, the rate-limiting event is either loss of APC function or oncogenic beta-catenin mutations. However, although the presence of these initiating mutations would predict nuclear beta-catenin accumulation throughout the tumor mass, heterogeneous intracellular distributions of this key Wnt signaling molecule are observed within primary tumors and their metastases. In particular, tumor cells located at the invasive front and those migrating into the adjacent stromal tissues show nuclear beta-catenin staining. Hence, different levels of Wnt signaling activity reflect tumor heterogeneity and are likely to account for distinct cellular activities such as proliferation and epithelial-mesenchymal transitions, which prompt tumor growth and malignant behavior, respectively. Several intrinsic (cell-autonomous and/or autocrine) and extrinsic (paracrine, derived from the tumor microenvironment) factors may explain this heterogeneity of Wnt/beta-catenin signaling activity within the tumor mass.  相似文献   

13.
Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB–mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process.  相似文献   

14.
The antimicrobial activities of lactoferrin (Lf) depend on its capacity to bind iron and on its direct interaction with the surface of microorganisms. Its protective effect also extends to the regulation of the host response to infections. Depending on the immune status of an individual, Lf can have anti-inflammatory properties that downregulate the immune response and prevent septic shock and damage to tissues. It also acts as a promoter of the activation, differentiation, and (or) proliferation of immune cells. Although most of the anti-inflammatory activities are correlated with the neutralization of proinflammatory molecules by Lf, the promoting activity seems to be related to a direct effect of Lf on immune cells. Although the mechanisms that govern these activities are not clearly defined, and probably differ from cell to cell, several cellular targets and possible mechanisms of action are highlighted. The majority of the molecular targets at the surface of cells are multiligand receptors but, interestingly, most of them have been reported as signaling, endocytosis, and nuclear-targeting molecules. This review focuses on the known and putative mechanisms that allow the immunoregulating effect of Lf in its interactions with immune cells.  相似文献   

15.
Plants exposed to biotic and abiotic stresses generate more reactive oxygen species (ROS) than their capacity to scavenge them. Biological molecules are susceptible to attack by ROS, including several proteins, polyunsaturated fatty acids and nucleic acids. The cellular arsenal for scavenging ROS and toxic organic radicals include ascorbate, glutathione, tocopherol, carotenoids, polyphenols, alkaloids and other compounds. Enzymatic antioxidants including superoxide dismutase, peroxidase, catalase and glutathione reductase detoxify either by quenching toxic compounds or regenerating antioxidants involving reducing power. Various aspects relating to sensors for ROS and signaling role of ROS in plants, improvement of antioxidant systems in transgenic plants and functional genomics approaches used to unravel the reactive oxygen gene network has been discussed.  相似文献   

16.
RON is a transmembrane receptor tyrosine kinase that mediates biological activities of Macrophage Stimulating Protein (MSP). MSP is a multifunctional factor regulating cell adhesion, motility, growth and survival. MSP binding to RON causes receptor tyrosine phosphorylation leading to up-regulation of RON catalytic activity and subsequent activation of downstream signaling molecules. Recent studies show that RON is spatially and functionally associated with other transmembrane molecules including adhesion receptors integrins and cadherins, and cytokine and growth factor receptors IL-3 betac, EPOR and MET. For example, MSP-induced cell shape change is mediated via RON-activated IL-3 betac receptor. Activation of integrins causes MSP-independent RON phosphorylation, and the integrin/RON collaboration regulates cell survival. Thus, RON can be activated without MSP by ligand stimulation of RON-associated receptors, and MSP-activated RON can cause ligand-independent activation of RON-associated receptors. As a result of the receptor cross-activation RON-specific pathways become a part of a signal transduction network of other receptors, and conversely signaling pathways activated by other receptors can be used by RON. This receptor collaboration extends the spectrum of cellular responses generated by MSP and by putative ligands of RON-associated receptors. However signaling pathways involved in the receptor cross-talk and underlying activation mechanisms remain to be investigated. The purpose of this review is to summarize data and to discuss a role of cross-talk between RON and other transmembrane receptors.  相似文献   

17.
Regulation of cell signaling by Wnt proteins is critical for the formation of neuronal circuits. Wnts modulate axon pathfinding, dendritic development, and synaptic assembly. Through different receptors, Wnts activate diverse signaling pathways that lead to local changes on the cytoskeleton or global cellular changes involving nuclear function. Recently, a link between neuronal activity, essential for the formation and refinement of neuronal connections, and Wnt signaling has been uncovered. Indeed, neuronal activity regulates the release of Wnt and the localization of their receptors. Wnts mediate synaptic structural changes induced by neuronal activity or experience. New emerging evidence suggests that dysfunction in Wnt signaling contributes to neurological disorders. In this article, the attention is focused on the function of Wnt signaling in the formation of neuronal circuits in the vertebrate central nervous system.The formation of neuronal connections requires the navigation of axons to their appropriate synaptic targets, the formation of terminal branches, and the assembly of functional synapses. These processes greatly depend on the proper dialogue between axons and their environment as they navigate to their target, and between axons and their postsynaptic dendrites during synapse assembly. A combination of secreted molecules and transmembrane proteins modulates these processes. Studies over the last 10 years have revealed an essential role for Wnt signaling in axon pathfinding, dendritic development, and synapse assembly in both central and peripheral nervous systems. Wnts also modulate basal synaptic transmission and the structural and functional plasticity of synapses in the central nervous system. Studies of Wnts in the nervous system have significantly contributed to our current understanding of the molecular mechanisms that control neuronal circuit assembly. These studies have also shed light into fundamental aspects of cell signaling such as novel mechanisms of protein secretion (Korkut et al. 2009) and receptor dynamics (Sahores et al. 2010). Here I review the mechanisms by which Wnts modulate axon guidance and synapse formation in the vertebrate central nervous system. I also discuss the increasing evidence in support for a role of Wnts in basal synaptic transmission, synaptic plasticity, and neurological disorders.  相似文献   

18.
19.
20.
研究表明氧化应激反应和慢性炎症反应是2型糖尿病糖、脂代谢紊乱和胰岛素抵抗发生的重要病理机制。小檗碱是中药黄连的主要有效成分之一。体内、外研究证实小檗碱可通过抗氧化和抗炎作用发挥对2型糖尿病的治疗作用。本文就小檗碱抗氧化和抗炎作用用于2型糖尿病治疗的分子机制研究进展作一综述。小檗碱抗氧化和抗炎作用机制复杂,目前的研究显示小檗碱可通过AMPK通路、MAPK通路、Nrf2通路和NF-κB通路发挥抗氧化和抗炎作用。然而,小檗碱的抗氧化和抗炎作用仍需进一步的深入研究证实。明确小檗碱的抗氧化和抗炎作用的分子机制,有助于进一步了解小檗碱治疗糖尿病作用的机理,为探寻治疗糖尿病的天然药物提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号