首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
地衣芽胞杆菌有效的基因编辑工具有限,为了拓展和丰富其基因编辑手段,在地衣芽胞杆菌中构建一个抗性标记可重复使用的FLP/FRT基因编辑系统,并通过敲除α-淀粉酶基因amyL、蛋白酶基因aprE及敲入外源透明颤菌血红蛋白基因vgb对该系统进行初步验证。首先以温敏质粒pNZT1为载体分别构建amyL和aprE基因敲除质粒pNZTT-AFKF和pNZTT-EFKF,两个敲除质粒各自包含针对目标基因的同源臂、抗性基因及同向的FRT位点;将敲除质粒转化地衣芽胞杆菌并经过两次同源交换过程实现目标基因的敲除;最后导入一个FLP重组酶表达质粒通过FLP/FRT系统的重组作用介导抗性基因的回收。为进一步验证本系统的实用性及编辑效率,构建了包含透明颤菌血红蛋白编码基因vgb表达盒及基因组丙酮酸甲酸裂解酶编码基因pflB敲除盒的重组质粒pNZTK-PFTF-vgb,并以此进行外源基因vgb在基因组上的定向敲入。结果显示,成功敲除amyL及aprE并回收了抗性标记卡那霉素基因,敲除后淀粉酶活和蛋白酶活分别减少95.3%和80.4%;vgb基因成功整合入基因组pflB位点并回收了抗性标记四环素基因,并利用荧光定量PCR技术检测到vgb的整合表达。文中首次建立了一个适用于地衣芽胞杆菌的、抗性标记可重复使用的FLP/FRT基因编辑系统,并进行了基因敲除及基因敲入验证,为地衣芽胞杆菌遗传改造提供了良好的方法参考。  相似文献   

3.
Public concerns about the issue of the environmental safety of genetically modified plants have led to a demand for technologies allowing the production of transgenic plants without selectable (antibiotic resistance) markers. We describe the development of an effective transformation system for generating such marker-free transgenic plants, without the need for repeated transformation or sexual crossing. This system combines an inducible site-specific recombinase for the precise elimination of undesired, introduced DNA sequences with a bifunctional selectable marker gene used for the initial positive selection of transgenic tissue and subsequent negative selection for fully marker-free plants. The described system can be generally applied to existing transformation protocols, and was tested in strawberry using a model vector in which site-specific recombination leads to a functional combination of a cauliflower mosaic virus 35S promoter and a GUS encoding sequence, thereby enabling the histochemical monitoring of recombination events. Fully marker-free transgenic strawberry plants were obtained following two different selection/regeneration strategies.  相似文献   

4.
A major limitation of crop biotechnology and breeding is the lack of efficient molecular technologies for precise engineering of target genomic loci. While transformation procedures have become routine for a growing number of plant species, the random introduction of complex transgenenic DNA into the plant genome by current methods generates unpredictable effects on both transgene and homologous native gene expression. The risk of transgene transfer into related plant species and consumers is another concern associated with the conventional transformation technologies. Various approaches to avoid or eliminate undesirable transgenes, most notably selectable marker genes used in plant transformation, have recently been developed. These approaches include cotransformation with two independent T-DNAs or plasmid DNAs followed by their subsequent segregation, transposon-mediated DNA elimination, and most recently, attempts to replace bacterial T-DNA borders and selectable marker genes with functional equivalents of plant origin. The use of site-specific recombination to remove undesired DNA from the plant genome and concomitantly, via excision-mediated DNA rearrangement, switch-activate by choice transgenes of agronomical, food or feed quality traits provides a versatile “transgene maintenance and control” strategy that can significantly contribute to the transfer of transgenic laboratory developments into farming practice. This review focuses on recent reports demonstrating the elimination of undesirable transgenes (essentially selectable marker and recombinase genes) from the plant genome and concomitant activation of a silent transgene (e.g., a reporter gene) mediated by different site-specific recombinases driven by constitutive or chemically, environmentally or developmentally regulated promoters. These reports indicate major progress in excision strategies which extends application of the technology from annual, sexually propagated plants towards perennial, woody and vegetatively propagated plants. Current trends and future prospects for optimization of excision-activation machinery and its practical implementation for the generation of transgenic plants and plant products free of undesired genes are discussed.  相似文献   

5.
Luo K  Sun M  Deng W  Xu S 《Biotechnology letters》2008,30(7):1295-1302
To excise a selectable marker gene from transgenic plants, a new binary expression vector based on the 'genetically modified (GM)-gene-deletor' system was constructed. In this vector, the gene coding for FLP site-specific recombinase under the control of a heat shock-inducible promoter HSP18.2 from Arabidopsis thaliana and isopentenyltransferase gene (ipt), as a selectable marker gene under the control of the cauliflower mosaic virus 35S (CaMV 35S) promoter, were flanked by two loxP/FRT fusion sequences as recombination sites in direct orientation. Histochemical staining for GUS activity showed that, upon induction by heat shock, all exogenous DNA, including the selectable marker gene ipt, beta-glucuronidase (gusA) gene and the FLP recombinase gene, between two loxP/FRT sites was eliminated efficiently from primary transgenic tobacco plants. Molecular analysis further confirmed that excision of the marker gene (ipt) was heritable and stable. Our approach provides a reliable strategy for auto-excising a selectable marker gene from calli, shoots or other tissues of transgenic plants after transformation and producing marker-free transgenic plants.  相似文献   

6.
Incorporation of a selectable marker gene during transformation is essential to obtain transformed plastids. However, once transformation is accomplished, having the marker gene becomes undesirable. Here we report on adapting the P1 bacteriophage CRE-lox site-specific recombination system for the elimination of marker genes from the plastid genome. The system was tested by the elimination of a negative selectable marker, codA, which is flanked by two directly oriented lox sites (>codA>). Highly efficient elimination of >codA> was triggered by introduction of a nuclear-encoded plastid-targeted CRE by Agrobacterium transformation or via pollen. Excision of >codA> in tissue culture cells was frequently accompanied by a large deletion of a plastid genome segment which includes the tRNA-ValUAC gene. However, the large deletions were absent when cre was introduced by pollination. Thus pollination is our preferred protocol for the introduction of cre. Removal of the >codA> coding region occurred at a dramatic speed, in striking contrast to the slow and gradual build-up of transgenic copies during plastid transformation. The nuclear cre gene could subsequently be removed by segregation in the seed progeny. The modified CRE-lox system described here will be a highly efficient tool to obtain marker-free transplastomic plants.  相似文献   

7.
A binary expression vector was constructed containing the insecticidal gene Allium sativum leaf agglutinin (ASAL), and a selectable nptII marker gene cassette, flanked by lox sites. Similarly, another binary vector was developed with the chimeric cre gene construct. Transformed tobacco plants were generated with these two independent vectors. Each of the T(0) lox plants was crossed with T(0) Cre plants. PCR analyses followed by the sequencing of the target T-DNA part of the hybrid T(1) plants demonstrated the excision of the nptII gene in highly precised manner in certain percentage of the T(1) hybrid lines. The frequency of such marker gene excision was calculated to be 19.2% in the hybrids. Marker free plants were able to express ASAL efficiently and reduce the survivability of Myzus persiceae, the deadly pest of tobacco significantly, compared to the control tobacco plants. Results of PCR and Southern blot analyses of some of the T(2) plants detected the absence of cre as well as nptII genes. Thus, the crossing strategy involving Cre/lox system for the excision of marker genes appears to be very effective and easy to execute. Documentation of such marker excision phenomenon in the transgenic plants expressing the important insecticidal protein for the first time has a great significance from agricultural and biotechnological points of view.  相似文献   

8.
Removal of a selectable marker gene from genetically modified (GM) crops alleviates the risk of its release into the environment and hastens the public acceptance of GM crops. Here we report the production of marker-free transgenic rice by using a chemically regulated, Cre/loxP-mediated site-specific DNA recombination in a single transformation. Among 86 independent transgenic lines, ten were found to be marker-free in the T0 generation and an additional 17 lines segregated marker-free transgenic plants in the T1 generation. Molecular and genetic analyses indicated that the DNA recombination and excision in transgenic rice were precise and the marker-free recombinant T-DNA was stable and heritable.The first two authors contributed equally to the work  相似文献   

9.
The ability to manipulate the genome and induce site-specific recombination using either Flippase (FLP) or Cre recombinase has been useful in many systems including Plasmodium berghei for specific deletion events or to obtain conditional gene expression. To test whether these recombinases are active in Plasmodium falciparum we constructed gene knockouts that contain sequences recognised as templates for site-specific recombination. We tested the ability of FLP and Cre recombinases, expressed conditionally in P. falciparum, to mediate deletion of the human dihydrofolate reductase (hdhfr) drug resistance gene. We show that Cre recombinase is capable of efficient removal of hdhfr by site-specific recombination. In contrast, FLP recombinase is very inefficient, even at the optimum temperature of 30 °C for this enzyme. These results demonstrate that Cre recombinase can be utilised in P. falciparum for deletion of specific sequences such as drug resistance genes. This can be exploited for recycling of drug resistance cassettes and for the design of specific recombination events in P. falciparum.  相似文献   

10.
Selectable marker genes are indispensable for efficient production of transgenic events, but are no longer needed after the selection process and may cause public concern and technological problems. Although several gene excision systems exist, few have been optimized for vegetatively propagated crops. Using a Cre-loxP auto-excision strategy, we obtained transgenic banana plants cv. Grande Naine (Musa AAA) devoid of the marker gene used for selection. We used T-DNA vectors with the cre recombinase gene under control of a heat shock promoter and selectable marker gene cassettes placed between two loxP sites in direct orientation, and a gene of interest inserted outside of the loxP sites. Heat shock promoters pGmHSP17.6-L and pHSP18.2, from soybean and Arabidopsis respectively, were tested. A transient heat shock treatment of primary transgenic embryos was sufficient for inducing cre and excising cre and the marker genes. Excision efficiency, as determined by PCR and Southern hybridization was 59.7 and 40.0% for the GmHSP17.6-L and HSP18.2 promoters, respectively. Spontaneous excision was not observed in 50 plants derived from untreated transgenic embryos. To our knowledge this is the first report describing an efficient marker gene removal system for banana. The method described is simple and might be generally applicable for the production of marker-free transgenic plants of many crop species.  相似文献   

11.
A plant transformation vector, pCLKSCLA25 (EU327498), was developed to contain eight cloning sites and the inducible self-excision system which provided an effective approach to eliminate the selectable marker gene(s) from transgenic plants. Upon induction by salicylic acid, the cre gene produced a recombinase that eliminated sequences encoding the selectable marker neomycin phosphotransferase and cre itself. The excision efficiency was 41% in transgenic tomato regenarants. The stilbene synthase gene (vst1) from Vitis vinifera L. was cloned into pCLKSCLA25. The expression of vst1 gene contributed to the accumulation of trans-reveratrol from 3.4 to 8.7 μg/g fresh wt in different marker-free transgenic tomato lines. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
Cre/lox位点特异性重组系统在高等真核生物中的研究进展   总被引:1,自引:0,他引:1  
Long DP  Tan B  Zhao AC  Xu LX  Xiang ZH 《遗传》2012,34(2):177-189
来自于P1噬菌体的Cre/lox系统通过位点特异性重组可以迅速而有效地实现各种生理环境下的基因定点插入、删除、替换和倒位等操作。Cre/lox系统作为目前基因打靶技术的核心工具,已被广泛应用于拟南芥、水稻、小鼠、果蝇、斑马鱼等高等真核模式生物。文章较为全面地介绍了Cre/lox系统的基本概况及其在高等真核生物中的应用,讨论了Cre/lox系统在研究中存在的主要问题和今后的发展方向,为利用该系统在不同高等生物中进行基因操作提供有用的参考。  相似文献   

14.
龙定沛  谭兵  赵爱春  许龙霞  向仲怀 《遗传》2012,34(2):177-189
来自于P1噬菌体的Cre/lox系统通过位点特异性重组可以迅速而有效地实现各种生理环境下的基因定点插入、删除、替换和倒位等操作。Cre/lox系统作为目前基因打靶技术的核心工具, 已被广泛应用于拟南芥、水稻、小鼠、果蝇、斑马鱼等高等真核模式生物。文章较为全面地介绍了Cre/lox系统的基本概况及其在高等真核生物中的应用, 讨论了Cre/lox系统在研究中存在的主要问题和今后的发展方向, 为利用该系统在不同高等生物中进行基因操作提供有用的参考。  相似文献   

15.
P-element transformation vector pCaSpeR3 was modified to obtain pFRT. The new vector contains two tandem FRT sites flanked by several unique restriction sites and separated by a polylinker harboring five convenient restriction sites, and allows easy cloning of DNA fragments between or close to the FRT sites. FLP-mediated excision of DNA sequences cloned between the FRT sites was demonstrated in vivo. The vector was proposed for molecular genetic studies of the position effect variegation, structural and molecular organization of Drosophila polytene chromosomes, etc.  相似文献   

16.
利用FLP/frt重组系统产生无选择标记的转基因烟草植株   总被引:3,自引:0,他引:3  
在植物转基因植株产生过程中,对转化细胞进行抗性筛选是通用程序,转化细胞的抗性一般是抗生素抗性或除草剂抗性,将赋予转化细胞抗性的选择标记基因删除是提高转基因植物生物安全性的重要措施。来自于啤酒酵母的FLP/frt位点特异性重组系统可有效删除同向定点重组位点frt之间的基因。通过多步骤重组,建立了可在植物中广泛应用的FLP/frt位点特异性重组系统。该系统包括含有frt位点的植物表达载体pCAMBIA1300-betA-frt-als-frt和含有由热诱导启动子hsp启动的FLP重组酶基因的植物表达载体pCAMBIA1300-hsp-FLP-hpt。利用二次转化的方式将二者先后转入烟草植株,热激处理后,热诱导型启动子hsp调控的重组酶FLP基因的表达催化位于选择标记基因als两侧同向frt位点间的重组反应,有效地删除了选择标记基因als。41%的经热激处理的二次转化植株发生了选择标记基因的删除,表明该系统在获得无选择标记基因的转基因植株中有很好的应用价值。  相似文献   

17.
The Cre/lox site-specific recombination controls the excision of a target DNA segment by recombination between two lox sites flanking it, mediated by the Cre recombinase. We have studied the functional expression of the Cre/lox system to excise a transgene from the rice genome. We developed transgenic plants carrying the target gene, hygromycin phosphotransferase (hpt) flanked by two lox sites and transgenic plants harboring the Cre gene. Each lox plant was crossed with each Cre plant reciprocally. In the Cre/lox hybrid plants, the Cre recombinase mediates recombination between two lox sites, resulting in excision of the hpt gene. The recombination event could be detected because it places the CaMV 35S promoter of the hpt gene adjacent to a promoterless gusA gene; as a result the gusA gene is activated and its expression could be visualized. In 73 Cre/lox hybrid plants from various crosses of T0 transgenic plants, 19 expressed GUS, and in 132 Cre/lox hybrid plants from crosses of T2 transgenic plants, 77 showed GUS expression. Molecular data proved the excision event occurred in all the GUS+ plants. Recombination occurred with high efficiency at the early germinal stage, or randomly during somatic development stages. Received. 2 April 2001 / Accepted: 29 June 2001  相似文献   

18.
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty‐seven transgenic lines were screened to identify CRISPR/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP/FRT recombination system designed specifically to remove the T‐DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9‐FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.  相似文献   

19.
FLP/FRT-mediated site-specific recombination was studied with a recombination-reporter gene system which allows visualization of -glucuronidase (GUS) expression after site-specific excisional activation of a silent gusA gene. This system was used for characterization of the functional activity of the Saccharomyces cerevisiae native FLP recombinase driven by the cauliflower mosaic virus (CaMV) 35s promoter [linked to the tobacco mosaic virus (TMV) omega translational leader] in mediating site-specific recombination of chromosomal FRT sites in tobacco FLP x FRT-reporter hybrids. Six hybrids were generated from crosses of lines containing either a stably integrated recombination-reporter or a FLP-expression construct. The activated gusA phenotype was specific to hybrid progenies and was not observed in either parental plants or their selfed progenies. Recombination efficiency in whole seedlings was estimated by the percent of radioactivity on a Southern blot which was incorporated into the recombined DNA product. Estimated efficiency mean values for the six crosses ranged from 5.2 to 52.0%. Histochemical analysis in hybrid plants visualized GUS activity with variable chimeric patterns and intensities. Recombination efficiency and GUS expression varied both among and within crosses, while higher recombination efficiency coincided with larger and more intense patterns of GUS activity. These data suggest that recombination is induced randomly during somatic developmental stages and that the pattern and intensity generated in a given plant are affected by factors imposing varibility not only between but also within crosses. Additionally, while recombination in a population of FLP/FRT hybrids may occur in all plants, recombination efficiency may still be low in any given plant. The activity of the native, as compared to a modified, FLP (Kilby et al. 1995) in the activation of transgenic traits in tobacco is discussed.  相似文献   

20.
The aim of this research was to generate selectable marker-free transgenic tomato plants with improved tolerance to abiotic stress. An estradiol-induced site-specific DNA excision of a selectable marker gene using the Cre/loxP DNA recombination system was employed to develop transgenic tomato constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase gene from Arabidopsis thaliana. Transgenic tomato plants containing a selectable marker were also produced as controls. The expression of AtIpk2β conferred improved resistance to drought, cold and oxidative stress in both sets of transgenic tomato plants. These results demonstrate the feasibility of using this Cre/loxP-based marker elimination strategy to generate marker-free transgenic crops with improved stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号