共查询到20条相似文献,搜索用时 15 毫秒
1.
In cultured Lymnaea stagnalis neurons, osmolarity increases (upshocks) rapidly elicited large membranous dilations that could be dislodged and pushed around inside the cell with a microprobe. Subsequent osmolarity decreases (downshocks) caused these vacuole-like dilations (VLDs) to disappear. Additional upshock/downshock perturbations resulted in repeated appearance/disappearance (formation/reversal) of VLDs at discrete sites. Confocal microscopy indicated that VLDs formed as invaginations of the substrate-adherent surface of the neuron: extracellular rhodamine-dextran entered VLDs as they formed and was expelled during reversal. Our standard VLD-inducing perturbation was: 2–4 min downshock to distilled water, upshock to normal saline. However, a wide range of other osmotic perturbations (involving osmolarities up to 3.5x normal, perturbations with or without Ca2+, replacement of ions by sucrose) were also used. We concluded that mechanical, not chemical, aspects of the osmo-mechanical shocks drove the VLD formation and reversal dynamics and that extracellular Ca2+ was not required.Following a standard perturbation, VLDs grew from invisible to their full diameter (>10 m) in just over a minute. Over the next 0.5–3 hr in normal saline, neurons recovered. Recovery eliminated any visible VLDs and was accompanied by cytoplasmic turmoil around the VLDs. Recovery was prevented by cytochalasin B, brefeldin A and N-ethylmaleimide but not by nocodazole. In striking contrast, these drugs did not prevent repeated VLD formation and reversal in response to standard osmo-mechanical perturbations; VLD disappearance during reversal and during recovery are different.The osmo-mechanical changes that elicited VLDs may, in an exaggerated fashion, mimic tension changes in extending and retracting neuntes. In this context we postulate: (a) the trafficking or disposition of membrane between internal stores and plasma membrane is mechano sensitive, (b) normally, this mechanosensitivity provides an on demand system by which neurons can accommodate stretch/release perturbations and control cell shape but, (c) given sudden extreme mechanical stimuli, it yields VLDs.
Present address: Biology Department, Washington University, St Louis, MO 63130-4899This work was supported by NSERC of Canada research grants to CEM and to LRM. CR was the recipient of a postdoctoral fellowship from the Ministere francais de la Recherche et de l'Espace. We thank J-M. Trifaro for the use of his image processing equipment. 相似文献
2.
Haruna Suzuki-Kerr Julie C. Lim Srdjan M. Vlajkovic Paul J. Donaldson 《Histochemistry and cell biology》2009,131(6):667-680
P2X1, 2, 3, 4, 6 and 7 are all expressed in a differentiation-dependent manner in the rat lens. However, in the lens outer cortex the subcellular distribution of all P2X isoforms is predominantly associated with a pool of receptors located in cytoplasmic vesicles. Here we investigate whether osmotic and hyperglycemic stress can alter the subcellular distribution of this cytoplasmic pool of P2X receptors. We show that in a discrete zone of the deeper outer cortex an isoform and stimulus-specific shift in the subcellular distribution of P2X receptors occurs from the cytoplasm to defined membrane domains. In response to hypertonic stress P2X1 and P2X4 isoforms became more closely associated with the broad sides of fiber cells, while under hypotonic conditions P2X4 and P2X6 isoforms associate with the narrow side membranes. No such changes in subcellular distribution were observed for P2X2,3 and 7 isoforms. Lens cultured in 50 mM glucose exhibited cell swelling in this zone but only P2X4 associated with narrow side membranes. Our results indicate P2X receptors can be differentially recruited to specific membrane domains of lens fiber cells by osmotic and hyperglycemic stress. Furthermore they suggest the involvement of specific P2X isoforms in the regulation of fiber cell volume and the initiation of diabetic cataract. 相似文献
3.
Elevated concentration of NaCl in liquid medium caused a concentration-dependent growth delay (adaptation lag) and decrease in the maximal growth rate of Bacillus megaterium. The adaptation to salt stress was accompanied by transformation of some otherwise stable (long-lived; LLP) cell proteins into quickly degraded (short-lived; SLP) ones. Exposure to the strongly growth-reducing 1 M NaCl increased the size of the SLP 'pool' of intracellular proteins from about 5 to about 15% of total protein. The major intracellular proteolytic capacity of B. megaterium is represented by intracellular serine proteinases (ISP). Paradoxically, their specific activity was lowered or masked during the adaptation phase marked by increased catabolism of short-lived and/or destabilized proteins by the stress. This documents that intracellular proteolytic activity cannot be a key regulator of protein catabolism during adaptation to stress. 相似文献
4.
Bortner CD Scoltock AB Sifre MI Cidlowski JA 《The Journal of biological chemistry》2012,287(9):6284-6295
Apoptosis is a stochastic, physiological form of cell death that is characterized by unique morphological and biochemical properties. A defining feature of apoptosis in all cells is the apoptotic volume decrease or AVD, which has been considered a passive component of the cell death process. Most cells have inherent volume regulatory increase (RVI) mechanisms to contest an imposed loss in cell size, however T-cells are unique in that they do not have a RVI response. We utilized this property to explore potential regulatory roles of a RVI response in apoptosis. Exposure of immature T-cells to hyperosmotic stress resulted in a rapid, synchronous, and caspase-dependent apoptosis. Multiple rounds of osmotic stress followed by recovery of cells in normal media resulted in the development of a population of cells that were resistant to osmotic stress induced apoptosis. These cells were also resistant to other apoptotic stimuli that activate via the intrinsic cell death pathway, while remaining sensitive to extrinsic apoptotic stimuli. Interestingly, these osmotic stress resistant cells showed no increase in anti-apoptotic proteins, and released cytochrome c from their mitochondria following exposure to intrinsic apoptotic stimuli. The osmotic stress resistant cells developed a RVI response, and inhibition of the RVI restored sensitivity to apoptotic agents. Analysis of apoptotic signaling pathways showed a sustained increase in phospho-AKT, whose inhibition also prevented an RVI response resulting in apoptosis. These results define a critical role of volume regulation mechanisms in apoptotic resistance. 相似文献
5.
Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium which secretes a wide range of hydrolytic enzymes, toxins, and virulence factors into the extracellular medium. Although P. aeruginosa possesses numerous specific systems for the export of proteins across its double-membrane envelopes, the Sec system is still the major and essential mechanism. However, very little is known about its molecular basis. We constructed, cloned, and expressed the N-terminal 236 amino acids of PaSecA domain (PaSecAN236), and SecAL43P mutants of P. aeruginosa in Escherichia coli BL21.19 (secA(ts)). Here, we describe the purification of PaSecAN236 by using osmotic shock as the first step to efficiently release targeted protein from cells, followed by cation-exchange and size exclusion columns to obtain homogeneous PaSecAN236. The purified PaSecA N-terminal domain was functional in stimulating the ATPase activity of mutant SecAL43P protein of P. aeruginosa. 相似文献
6.
Water relations and xylem transport of nutrients in pepper plants grown under two different salts stress regimes 总被引:4,自引:0,他引:4
Josefa M. Navarro Consuelo Garrido Vicente Martínez Micaela Carvajal 《Plant Growth Regulation》2003,41(3):237-245
Two iso-osmotic concentrations of NaCl and Na2SO4 were used for discriminating between the effects of specific ion toxicities of salt stress on pepper plants (Capsicum annuum L.) grown in hydroponic conditions, in a controlled-environment greenhouse. The two salts were applied to plants at different electrical conductivities, and leaf water relations, osmotic adjustment and root hydraulic conductance were measured. Leaf water potential (w), leaf osmotic potential (o) and leaf turgor potential (p) decreased significantly when EC increased, but the decrease was less for NaCl- than for Na2SO4-treated plants. The reduction in stomatal conductance was higher for NaCl-treated plants. There were no differences in the effect of both treatments on the osmotic adjustment, and a reduction in root hydraulic conductance and the flux of solutes into the xylem was observed, except for the saline ions (Na+, Cl– and SO4
2–). Therefore, pepper growth decreased with increasing salinity because the plants were unable to adjust osmotically or because of the toxic effects of Cl–, SO4
2– and/or Na+. However, turgor of NaCl-treated plants was maintained at low EC (3 and 4 dS m–1) probably due to the maintenance of water transport into the plant (decrease of stomatal conductance), which, together with the lower concentration of Na+ in the plant tissues compared with the Na2SO4 treatment, could be the cause of the smaller decrease in growth. 相似文献
7.
One of the effective ways to address the effects of abnormal climate change on plant is to find germplasms that have better
resistance to adverse environments. In this paper, we studied the responses of 5 pepper species Capsicum annuum L. (CA), C. baccatum L. (CB), C. chinense Jacquin. (CC), C. frutescens L. (CF) and C. pubescens Ruiz & Pavon (CP) as well as a wild pepper C. baccatum var. baccatum (CBY) to waterlogging stress. The results showed that warterlogging treatment greatly decreases photosynthetic
pigment content, net photosynthetic rate (P
N) and stomatal conductance (g
s), and dramatically increases proline content and water-use efficiency (WUE) in all tested pepper, suggesting that pepper
has weak resistance to waterlogging stress. The results also showed that changes of the above parameters vary in different
species. CP had the smallest decreases in photosynthetic pigment content, P
N, and g
s and greatest increases in proline content and WUE. By contrast, CC had the greatest decreases in photosynthetic pigment content,
P
N, and g
s and smallest increases in proline content and WUE, indicating that different species had different resistance to adverse
environment and species CP and CC had the strongest and the weakest resistances, respectively. In addition, the study also
demonstrated that wild pepper CBY had better resistance to adverse environment than all the tested species, indicating loss
of the stress resistance genes during the process of domestication. Taking together, our study strongly suggests that pepper
species should crossbreed with other species and wild pepper to expand genetic diversity, enlarge genetic distance, promote
production, and improve the resistance to adverse environments. 相似文献
8.
Constance A. Harrington 《Physiologia plantarum》1987,69(1):35-48
Red alder ( Alnus rubra Bong.) and black cottonwood ( Populus trichocarpa Torr. & Gray) seedlings were monitored to evaluate response during a 20-day period of artificial flooding and a 20-day recovery period following flooding. During the flooding period, both species showed changes in nutrient uptake and transport, initiated stemderived adventitious roots that became aerenchymatous, and exhibited hypertrophied lenticels. Flooded red alder seedlings also showed reduced height and leaf area growth and developed lower-stem hypertrophy. Flooded black cottonwood seedlings exhibited root dieback, aerenchyma in below ground root tips, and changes in root hydraulic conductance and xylem pressure potential. Contrary to expectations, however, stomatal closure following flooding was not observed in either species. Flooded red alder seedlings increased growth rapidly when drained, and by the end of the recovery period, formerly flooded and non-flooded red alder seedlings differed only minimally in this respect. In contrast, several characteristics of black cottonwood – including growth rate and nutrient content – still differed between formerly flooded and non-flooded seedlings at the end of the recovery period. Based on observed treatment differences at the end of the experiment, red alder seedlings were judged to be more tolerant of flooding than black cottonwood. 相似文献
9.
The physiological responses of alfalfa (Medicago sativa L. cv. Gilboa) to salinity (100 mM NaCl) and some inorganic nutrients (K+, Ca2+ and N as NO3-) were investigated. Salinity caused a substantial reduction in biomass, carbon assimilation rate, stomatal conductance, water use efficiency, leaf area, relative growth rate, NO3- content and nitrate reductase activity, whereas, transpiration rate was slightly affected. Inclusion of K+, Ca2+ and N as NO3- in plant nutrient medium in combination or alone brought about a marked stimulation in control plants and moderated the salinity caused reductions in NaCl treated plants. In addition, plants also exhibited differences in these parameters at two growth stages. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
10.
When over-expressed in the cytoplasm of Escherichia coli, carboxylesterase Est55 of Geobacillus stearothermophilus was found to be released from cells upon osmotic shock. Comparing two osmotic shock protocols showed that release of Est55 was abolished in the absence of mechanosensitive channel MscL by one method but not the other. The discrepancy extended to several previously reported cytoplasmic proteins released by osmotic shock, including: EF-Tu, thioredoxin, and DnaK in E. coli. Stepwise analyses of parameters between these two protocols revealed that the use of mechanical pipetting instead of gentle dilution of cells prior to exposure to hypotonic solution abolished the effect of MscL. Furthermore, while this phenomenon of release of certain cytoplasmic proteins was sustained in all three wild type strains of E. coli, presence of gadolinium was able to serve as an MscL channel blocker and prevented release of Est55 and EF-Tu in the process. An optimized protocol of osmotic shock was developed from this study to provide a more reliable assessment of location of proteins in E. coli. This method allowed release of authentic periplasmic MalE and beta-lactamase proteins comparable to that by EDTA-lysozyme treatment. 相似文献
11.
本文在已知的气孔运动机理的基础上,对现有的教学模型加以改进,建立了除VPD、CO2和土壤水势的影响外,还能模拟光照和温度等因子对气孔影响的数学模型。在不同组合的环境因子下模拟得到的结果与公认的实验观测结果基本一致。它可以作为研究气孔整体行为的理论框架,也可用于检验多种关于气孔运动的假设。 相似文献
12.
Red blood cell (RBC) swelling and membrane hole formation in hypotonic external media were studied by measuring the time-dependent capacitance, C, and the conductance, G, in the beginning of the β-dispersion range. At high and moderate osmolarities of the external solution the capacitance reaches a steady-state whereas at low osmolarities it reveals a biphasic kinetics. Examination of RBC suspensions exposed to different concentrations of HgCl2 demonstrates that water transport through mercury-sensitive water channel controls RBC swelling. Unlike the capacitance, an increase in the conductance to a stationary level is observed after a certain delay. A comparison of G(t) curves recorded for the suspensions of the intact cells and those treated with cytochalasin B or glutaraldehyde demonstrates the significant effect of the membrane viscoelasticity on the pore formation. It is shown that the stretched membrane of completely swollen RBC retains its integrity for a certain time, termed as the membrane lifetime, tmemb. Therefore, the resistivity of RBCs to a certain osmotic shock may be quantified by the distribution function of RBC(tmemb). 相似文献
13.
The symbiosis of Azorhizobium caulinodans and an annul legume Sesbania rostrata was recently found to be tolerant to cadmium pollution by an unknown mechanism. In this study, A. caulinodans ORS571 and ZY-20 showed much stronger tolerance to cadmium than a mutant ORS571-X15 and a common Rhizobium sp., with minimum inhibitory concentration values as high as 4 and 5 mM (versus 1 and 0.1 mM) on yeast extract mannitol agar medium, respectively. Although Cd uptake by all three strains of A. caulinodans were mostly from absorption rather than binding (both loosely or tightly) on cell surface, in resistant strains a higher portion of extractable Cd was bound on the cell surface vs. absorbed (about 1:2.5 ratio) compared to the sensitive mutant (about 1:35.1 ratio). These results suggest that certain level of metal exclusion by a permeability barrier was involved in the mechanism of resistance to Cd by A. caulinodans ORS571 and ZY-20. Over the 12-h period of cultivation in yeast extract mannitol agar medium with Cd addition, the Cd concentrations in the outer membrane and periplasm and spheroplast were the highest at the first 3 h, and declined steadily over time. The fact that Cd concentrations in spheroplast of all three strains were many folds higher than those in outer membrane and periplasm, suggests that extracellular sequestration was not the only mechanism of Cd tolerance in A. caulinodans. The decline of Cd concentrations was significantly faster and started earlier in strains ORS571 and ZY-20 than in ORS571-X15. This suggests a second, probably more substantial, mechanism involves active transport of the metal from the cell, e.g., some efflux system for maintaining homeostasis under cadmium stress. 相似文献
14.
Responses of marine macroalgae to hydrogen-peroxide stress 总被引:1,自引:0,他引:1
A.L Dummermuth U Karsten G.M König 《Journal of experimental marine biology and ecology》2003,289(1):103-121
In this study, we determined the antioxidative potential of 15 marine macroalgae by measuring the photosynthetic efficiency under artificial oxidative stress after a 30-min exposure to a series of ascending H2O2 concentrations. Species exhibiting high maximum quantum yields (Fv/Fm values) were regarded as not susceptible towards H2O2 stress. In addition to the short-term stress experiments, the antioxidative defense systems (enzymatic and non-enzymatic) of selected algal species under longer exposure times to H2O2 were investigated.Species with striking photosynthetic activity under H2O2 stress were Chaetomorpha melagonium (Chlorophyta), showing 40% reduced Fv/Fm as compared to the control after 8 days of exposure to 20 mM H2O2. In Fucus distichus (Phaeophyta) Fv/Fm decreased to 50% of the control under the same exposure conditions. Polysiphonia arctica (Rhodophyta) exhibited highest Fv/Fm values with a reduction of only 25%, therefore possessing the highest antioxidative potential of the investigated species.In P. arctica the activities of the antioxidative enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), as well as the pool size of the antioxidant ascorbic acid were investigated. When exposed to different H2O2 concentrations (0-2 mM) over 6 days, the intrinsic activities of SOD and GR were stimulated. In a kinetic study over 8 days, the activity of antioxidative enzymes APX and CAT as well as ascorbic acid content were recorded. APX activity was much higher in H2O2-treated thalli at the end of the experiment than in the control, also CAT activity increased significantly with increasing H2O2 stress. In parallel, ascorbic acid content was reduced under high H2O2 concentrations. Furthermore, by using GC-MS techniques in P. arctica bromophenolic compounds with antioxidative properties were identified.This study shows that the measurement of the in vivo fluorescence of photosystem II is a suitable tool to determine the effect of oxidative stress on macroalgae. From these studies it is obvious that different algal species have varying strategies against oxidative stress which correlate with zonation on the shore. 相似文献
15.
The effects of shade on the gas exchange of four Hosta cultivars were determined under differing irradiances (5, 30, 50, and 100 % of full irradiance) within pots. Irradiance saturation ranged between 400–800 mol m–2 s–1 among the four cultivars, of which H. sieboldiana cv. Elegans and H. plantagenea cv. Aphrodite exerted the lowest saturation and compensation irradiances. The maximal photosynthetic rate (P
max) was significantly higher in shade than in full irradiance in Elegans and Aphrodite, and was at maximum in seedlings grown in 30 % of full irradiance. The best shade treatment for cvs. Antioch and Golden Edger was 50 % of full irradiance. The diurnal gas exchange patterns in four cultivars were greatly influenced by the irradiance. Single-peak patterns of net photosynthetic rate (P
N) and stomatal conductance (g
s) were observed under 5 and 30 % full irradiance for all the cultivars while Elegans and Aphrodite suffered from midday depression in 50 % of full irradiance. Under open sky, all four cultivars showed two-peak patters in their diurnal gas exchange, but the midday depression was less in Antioch and Golden Edger than in Elegans and Aphrodite. According to their photosynthetic responses to shade, the shade tolerance of the four cultivars was in the order: Elegans>Aphrodite>Antioch>Golden Edger. 相似文献
16.
Experiments were performed to test the hypothesis that succulents “shift” their method of photosynthetic metabolism in response to environmental change. Our data showed that there were at least three different responses of succulents to plant water status. When plant water status of Portulacaria afra (L.) Jacq. was lowered either by withholding water or by irrigating with 2% NaCl, a change from C3-photosynthesis to Crassulacean acid metabolism (CAM) occurred. Fluctuation of titratable acidity and nocturnal CO2 uptake was induced in the stressed plants. Stressed Peperomia obtusifolia A. Dietr. plants showed a change from C3-photosynthesis to internal cycling of CO2. Acid fluctuation commenced in response to stress but exogenous CO2 uptake did not occur. Zygocactus truncatus Haworth plants showed a pattern of acid fluctuation and nocturnal CO2 uptake typical of CAM even when well irrigated. The cacti converted from CAM to an internal CO2 cycle similar to Peperomia when plants were water-stressed. Reverse phase gas exchange in succulents results in low water loss to carbon gain. Water is conserved and low levels of metabolic activity are maintained during drought periods by complete stomatal closure and continual fluctuation of organic acids. 相似文献
17.
We studied the mechanisms involved in heat gradient-induced thermotolerance of Saccharomyces cerevisiae. Yeasts were slowly heated in a nutrient medium from 25 to 50 degrees C at 0.5 degrees C/min or immediately heat shocked at 50 degrees C, and both sets of cultures were maintained at this temperature for 1 h. Cells that had been slowly heated showed a 50-fold higher survival rate than the rapidly heated cells. Such thermotolerance was found not to be related to protein synthesis. Indeed Hsp104 a known protein involved in yeast thermal resistance induced by a preconditioning mild heat treatment, was not synthesized and cycloheximide addition, a protein synthesis inhibitor, did not affect the thermoprotective effect. Moreover, a rapid cooling from 50 to 25 degrees C applied immediately after the heat slope treatment inhibited the mechanisms involved in thermotolerance. Such observations lead us to conclude that heat gradient-induced thermal resistance is not directly linked to mechanisms involving intracellular molecules synthesis or activity such as proteins (Hsps, enzymes) or osmolytes (trehalose). Other factors such as plasma membrane phospholipid denaturation could be involved in this phenomenon. 相似文献
18.
Activation of mitogen-activated protein (MAP) kinases has been reported to occur after a hypo-osmotic cell swelling in various types of cells. In renal epithelial A6 cells, the hypo-osmotic shock induced a rapid increase in the phosphorylation of an extracellular signal-regulated kinase (ERK)-like protein that was maximal 10 min after osmotic stress. Activation of ERK was significantly increased when hypo-osmotic stress was performed in the absence of extracellular Ca2+, a condition that inhibits regulatory volume decrease (RVD). Exposure of cells to PD98059, an inhibitor of the MAP kinase kinase MEK, at a concentration that fully cancelled ERK activation, did not inhibit RVD. On the contrary, RVD was abolished when osmotic shock was induced in the presence of SB203580, an inhibitor of stress-activated protein kinases (SAPKs). These results suggest that different MAP kinases are activated after hypo-osmotic stress in A6 cells. SAPKs would be involved in the control of RVD, while ERK would lead to later events, such as gene expression or energy metabolism. 相似文献
19.
Daniel Le Rudulier LászlóN. Csonka 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,719(2):273-283
Osmotic stress, imposed by 0.5 M NaCl or other electrolytes and non-electrolytes, caused over a 100-fold reduction in the whole-cell nitrogen fixation activity in Klebsiella pneumoniae, wild-type strain M5A1. This reduction of nitrogen fixation activity could be reversed by the addition of proline to the culture medium at 0.5 mM concentration. With 0.5 M NaCl, in the presence of proline, nitrogenase activity was 47-fold greater than in the absence of proline. A mutation, originally isolated in Salmonella typhimurium, which resulted in proline over-production and enhanced osmotolerance, was transferred into K. pneumoniae by F′ conjugation. Intracellular proline, synthesized at high levels because of the mutation, had similar stimulatory effects on nitrogen fixation under osmotic stress as proline provided exogenously. In the overproducing strain, the cellular level of proline is elevated as much as 125-fold during stress over that seen in the control strain. To determine the mechanism of stimulation of nitrogen fixaton by proline during stress, the biosynthesis of nitrogenase polypeptides was studied. Net nitrogenase biosynthesis and the biosynthesis of other unidentified peptides, is strongly inhibited during osmotic stress; proline reverses the inhibition. The role of proline in enhancing nitrogen fixation during osmotic stress is discussed. 相似文献