首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The amphibian antidiuretic hormone, arginine vasotocin, stimulated osmotic water flow across isolated skin from the pelvic but not the pectoral skin of the toad, Bufo woodhouseii. Changes in the apical membrane capacitance were not observed for either region of the skin following treatment with arginine vasotocin when there was an osmotic gradient across the tissue. In the absence of an osmotic pressure gradient, the apical membrane capacitance of the pelvic skin increased from 2.8±0.5 to 3.3±0.6 F · cm-2 after treatment with 5 · 10-8 M arginine vasotocin. Under these conditions, apical membrane capacitance of the pectoral skin was 1.8±0.1 F · cm-2 and did not change significantly after arginine vasotocin treatment. The amiloride-sensitive short-circuit current across the pelvic skin was stimulated by arginine vasotocin as was the density of channels in the apical membrane as determined by fluctuation analysis. Values for channel density in the pelvic skin also correlated with apical membrane capacitance and increased from 90 to 273 channels per m2 of estimated membrane area following arginine vasotocin treatment. In the pectoral skin the stimulation of short-circuit current following arginine vasotocin treatment was small and an increase in channel density could not be demonstrated. The current through single Na+ channels in both regions of the skin did not different either before or after arginine vasotocin treatment.Abbreviations A amiloride - ADH antidiuretic hormone - AVT arginine vasotocin - C capacitance - C a capacitance of apical membrane - f c corner frequency - i single-channel current - osmotic water flow - IMP intramembrane particles - I sc short-circuit current - amiloride-sensitive short-circuit current - M channel density - P o probability of a channel being open - R channel receptor - R a apical resistance - R p paracellular resistance  相似文献   

2.
Embryonic rat hippocampal neurons were cultured in a serum-free defined medium (MEM/N3) either directly on poly-D -lysine (PDL) or on a confluent monolayer of postnatal cortical astrocytes, C6 glioma cells, or Rat2 fibroblasts. Neurons on PDL were grown in MEM/N3 or in MEM/N3 conditioned for 24 h by astrocytes or C6 cells. Membrane capacitance (Cm) and γ-aminobutyric acid (GABA)-, glycine-, kainate-, and N-methyl-D -aspartate (NMDA)-induced currents were quantified using whole-cell patch-clamp recordings. Cm as well as the amplitude and the density of these currents in neurons cultured on astrocytes were significantly greater than those in neurons grown on PDL after 24 and 48 h. C6 cells mimicked astrocytes in promoting Cm and GABA-, glycine-, and NMDA-evoked, but not kainate-evoked, currents. Cm and currents in neurons grown on Rat2 cells were comparable to those in neurons on PDL. Astrocytes maintained in culture for 3 months were noticeably less effective than freshly prepared ones just grown to confluence. Suppression of spontaneous cytoplasmic Ca2+ (Cac2+) elevations in astrocytes by 1,2-bis(2-aminophenoxy) ehane-N, N, N, N-tetraacetic acid acetoxymethyl ester (BAPTA-AM) loaded intracellularly blocked the observed modulatory effects. Medium conditioned by either astrocytes or C6 cells mimicked the effects of direct coculture of neurons on these cells in promoting Cm and amino acid-evoked currents. Inclusion of antagonists at GABA and glutamate receptors in coculture experiments blocked the observed effects. Thus, diffusible substances synthesized and/or secreted by astrocytes in a Cac2+-dependent manner can regulate neuronal growth and aminoacid receptor function, and these effects may involve neuronal GABA and glutamate receptors. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 848–864, 1997  相似文献   

3.
In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA) and sodium (Nav) channels trigger excitotoxic neuron death. Na+, Ca++ and H2O influx into affected neurons elicits swelling (increased cell volume) and pathological blebbing (disassociation of the plasma membrane’s bilayer from its spectrin-actomyosin matrix). Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM)-based force spectroscopy) upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine). Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be feasible.  相似文献   

4.
During intracellular polarization of identified sensory neurons of the leech by square pulses of hyperpolarizing current electrical parameters of the cell membranes were determined: input resistance of the neuron Rn, time constant of the membrane , the ratio between conductance of the cell processes and conductance of the soma , the resistance of the soma membrane rs, the input resistance of the axon r a , capacitance of the membrane Cs, and resistivity of the soma membrane Rs. The results obtained by the study of various types of neurons were subjected to statistical analysis and compared with each other. Significant differences for neurons of N- and T-types were found only between the values of , Cs, and Rs (P<0.01). These parameters also had the lowest coefficients of variation. The surface area of the soma of the neurons, calculated from the capacitance of the membrane (the specific capacitance of the membrane was taken as 1 µF/cm2) was 7–10 times (N-neurons) or 4–6 times (T-neurons) greater than the surface area of a sphere of the same diameter. The resistivity of the soma membrane Rs was 35.00 k·cm2 for cells of the N-type and 19.50 k·cm2 for T-neurons. The reasons for the relative stability of this parameter compared with the input resistance of the cell (coefficient of variation 22–7 and 53–31% respectively) are discussed. The possible effects of electrical characteristics on the properties of repeated discharges in neurons of different types also are discussed.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol.7, No.3, pp.295–301, May–June, 1975.  相似文献   

5.
The outer hair cell (OHC) from the mammalian organ of Corti possesses a bell-shaped voltage-dependent capacitance function. The nonlinear capacitance reflects the activity of membrane bound voltage sensors associated with membrane motors that control OHC length. We have studied the effects of the lipophilic ions, tetraphenylborate (TPB) and tetraphenylphosphonium (TPP+), on nonlinear capacitance and motility of isolated guinea-pig OHCs. Effects on supporting cells were also investigated. TPB produced an increase in the peak capacitance (Cm pk ) and shifted the voltage at peak capacitance (V pkCm ) to hyperpolarized levels. Washout reversed the effects. Perfusion of 0.4 μm TPB caused an average increase in Cm pk of 16.3 pF and V pkCm shift of 13.6 mV. TPP+, on the other hand, only shifted V pkCm in the positive direction, with no change in Cm pk . The contributions from native OHC and TPB-induced capacitance were dissected by a double Boltzmann fitting paradigm, and by blocking native OHC capacitance. While mechanical response studies indicate little effect of TPB on the motility of OHCs which were in normal condition or treated with salicylate or gadolinium, the voltage at maximum mechanical gain (V δ Lmax ) was shifted in correspondence with native V pkCm , and both changed in a concentration-dependent manner. Both TPB-induced changes in Cm pk and V pkCm were affected by voltage prepulses and intracellular turgor pressure. TPB induced a voltage-dependent capacitance in supporting cells whose characteristics were similar to those of the OHC, but no indication of mechanical responses was noted. Our results indicate that OHC mechanical responses are not simply related to quantity of nonspecific nonlinear charge moved within the membrane, but to the effects of motility voltage-sensor charge movement functionally coupled to a mechanical effector. Received: 14 May 1998/Revised: 24 August 1998  相似文献   

6.
We have previously demonstrated the expression of BK channels in human glioma cells. There was a curious feature to the whole-cell currents of glioma cells seen during whole-cell patch-clamp: large, outward current transients accompanied repolarization of the cell membrane following an activating voltage step. This transient current, I transient, activated and inactivated rapidly (1 ms). The I-V relationship of I transient had features that were inconsistent with simple ionic current through open ion channels: (i) I transient amplitude peaked with a –80 mV voltage change and was invariant over a 200 mV range, and (ii) I transient remained large and outward at –140 mV. We provide evidence for a direct relationship of I transient to glioma BK currents. They had an identical time course of activation, identical pharmacology, identical voltage-dependence, and small, random variations in the amplitude of the steady-state BK current and I transient seen over time were often perfectly in phase. Substituting intracellular K+ with Cs+, Li+, or Na + ions reversibly reduced I transient and BK currents. I transient was not observed in recordings of other BK currents (hbr5 expressed in HEK cells and BK currents in rat neurons), suggesting I transient is unique to BK currents in human glioma cells. We conclude that I transient is generated by a mechanism related to the deactivation, and level of prior activation, of glioma BK channels. To account for these findings we propose that K+ ions are trapped within glioma BK channels during deactivation and are forced to exit to the extracellular side in a manner independent of membrane potential.  相似文献   

7.
Neurons of the mammalian medullary respiratory center have complex patterns of electrophysiological behavior. Three typical phenomena associated with these patterns are spike frequency adaptation (SFA), delayed excitation (DE), and postinhibitory rebound (PIR). Although several nuclei are associated with the medullary-pontine respiratory center, we focused on neurons from two nuclei: (1) the ventral subnucleus of the nucleus tractus solitarius (vNTS) of the dorsal respiratory group and (2) the nucleus ambiguus (NA) of the ventral respiratory group. We developed a Hodgkin-Huxley (HH) type model of the typical medullary neuron that is capable of mimicking the discharge pattern of real neurons to a very high degree. Closer examination of typical data revealed, however, that there was not one type of medullary respiratory neuron, but at least three (types A, B 1, and B 2). We classified these neurons based on the electrophysiologic phenomena that they exhibited (type A exhibits DE but not PIR; types B 1 and B 2 exhibit PIR but not DE; all types are adapting). Our objective was to relate each of these well-known phenomena to specific ionic current mechanisms. In the model, three currents directly affect the phenomena investigated: the Ca2+-activated K + current, I K,Ca , controls peak and steady-state firing rates and the time constant of adaptation; the transient outward K + current, I A, is responsible for all aspects of DE, including the dependence of delay on the magnitude and duration of conditioning hyperpolarization; and the hyperpolarization-activated current, I h, elicits PIR and dictates its dependencies. We consider that our HH model represents a unifying structure, whereby different electrophysiological phenomena or discharge patterns can be emulated using different strengths of the component ionic membrane currents (particularly I K,Ca , I A, and I h). Moreover, its predictions suggest that the electrophysiological characteristics of medullary respiratory neurons, from different areas of the brainstem and even from different species, can be modeled using the same structural framework, wherein the specific properties of individual neurons are emulated by adjusting the strengths of key ionic membrane currents in the model.  相似文献   

8.
Electrogenic ion transport by the Na,K-ATPase was investigated in a model system of protein-containing membrane fragments adsorbed to a lipid bilayer. Transient Na+ currents were induced by photorelease of ATP from inactive caged ATP. This process was accompanied by a capacitance change of the membrane system. Two methods were applied to measure capacitances in the frequency range 1 to 6000 Hz. The frequency dependent capacitance increment, ΔC, was of sigmoidal shape and decreased at high frequencies. The midpoint frequency, f 0, depended on the ionic strength of the buffer. At 150 mm NaCl f 0 was about 200 Hz and decreased to 12 Hz at high ionic strength (1 M). At low frequencies (ff 0) the capacitance increment became frequency independent. It was, however, dependent on Na+ concentration and on the membrane potential which was generated by the charge transferred. A simple model is presented to analyze the experimental data quantitatively as a function of two parameters, the capacitance of the adsorbed membrane fragments, C P, and the potential of maximum capacitance increment, ψ 0. Below 5 mm Na+ a negative capacitance change was detected which may be assigned to electrogenic Na+ binding to cytoplasmic sites. It could be shown that the results obtained by experiments with the presented alternating current method contain the information which is determined by current-relaxation experiments with cell membranes. Received: 3 November 1997 / Revised version: 19 February 1998 / Accepted: 21 February 1998  相似文献   

9.
Summary A technique for isolating thestratum corneum from the subjacent layers of the epithelium was developed which permits studying thestratum corneum as an isolated membrane mounted between half-chambers. The method basically consists of an osmotic shock induced by immersing a piece of skin in distilled water at 50°C for 2 min. When the membrane is bathed on each surface by NaCl-Ringer's solution, its electrical resistance is 14.1±1.3 cm2 (n=10). This value is about 1/100 of the whole skin resistance in the presence of the same solution. The hydraulic filtration coefficient (L p ) measured by a hydrostatic pressure method, with identical solutions on each side of the membrane, is 8.8×10–5±1.5×10–5 cm sec–1 atm–1 (n=10) in distilled water and 9.2×10–5±1.4×10–5 cm sec–1 atm–1 (n=10) in NaCl-Ringer's solution. These values are not statistically different and are within the range of 1/80 to 1/120 of the whole skinL p . Thestratum corneum shows an amphoteric character when studied by KCl diffusion potentials at different pH's. The membrane presents an isoelectric pH of 4.6±0.3 (n=10). Above the isoelectric pH the potassium transport number is higher than the chloride transport number; below it, the reverse situation is valid. Divalent cations (Ca++ or Cu++) reduce membrane ionic discrimination when the membrane is negatively charged and are ineffective when the membrane fixed charges are protonated at low pH.  相似文献   

10.
Gibberellic acid (GA3) stimulates K+ efflux from the barley (Hordeum vulgare L. cv. Himalaya) aleurone. We investigated the mechanism of K+ flux across the plasma membrane of aleurone protoplasts using patch-clamp techniques. Potassium-ion currents, measured over the entire surface of the protoplast plasma membrane, were induced when the electrochemical gradient for K+ was inward (into the cytoplasm). The magnitude and voltage-dependence of this inward current were the same in protoplasts treated with GA3 and in control protoplasts (no GA3). Inward currents activated by negative shifts in the membrane potential (EM) from the Nernst potential for K+ (EK) showed membrane conductance to be a function of the electrochemical gradient (i.e. EM-EK). Single-channel influx currents of K+ were recorded in small patches of the plasma membrane. These channels had a single-channel conductance of 5–10 pS with 100 mM K+ on the inside and 10 mM K+ on the outside of the plasma membrane. Single-channel currents, like whole-cell currents, were the same in protoplasts treated with GA3 and control protoplasts. Voltage-gated efflux currents were found only in protoplasts tha thad been incubated without GA3. We conclude that K+ influx in the aleurone is mediated by channels and these membrane proteins are not greatly effected by GA3.Abbreviations and symbols FK Nernst potential for K+ - EM membrane potential - Erev reversal potential - GA3 gibberellic acid - Ki concentration of K+ inside the cell - Ko concentration of K+ outside the cell - R gas constant - S conductance (siemens) - T temperature (oK) - i ionic activity coefficient for internal (cytoplasmic) solution - o ionic activity coefficient for external medium  相似文献   

11.
The potency and specificity of a novel organic I h current blocker DK-AH 268 (DK, Boehringer) was studied in cultured rat trigeminal ganglion neurons using whole-cell patch-clamp recording techniques. In neurons current-clamped at the resting potential, the application of 10 μm DK caused a slight hyperpolarization of the membrane potential and a small increase in the threshold for action potential discharge without any major change in the shape of the action potential. In voltage-clamped neurons, DK caused a reduction of a hyperpolarization-activated current. Current subtraction protocols revealed that the time-dependent, hyperpolarization-activated currents blocked by 10 μm DK or external Cs+ (3 mm) had virtually identical activation properties, suggesting that DK and Cs+ caused blockade of the same current, namely I h . The block of I h by DK was dose-dependent. At the intermediate and higher concentrations of DK (10 and 100 μm) a decrease in specificity was observed so that time-independent, inwardly rectifying and noninactivating, voltage-gated outward potassium currents were also reduced by DK but to a much lesser extent than the time-dependent, hyperpolarization-activated currents. Blockade of the time-dependent, hyperpolarization-activated currents by DK appeared to be use-dependent since it required hyperpolarization for the effect to take place. Relief of DK block was also aided by membrane hyperpolarization. Since both the time-dependent current blocked by DK and the Cs+-sensitive time-dependent current behaved as I h , we conclude that 10 μm DK can preferentially reduce I h without a major effect on other potassium currents. Thus, DK may be a useful agent in the investigation of the function of I h in neurons. Received: 3 March 1995/Revised: 8 July 1997  相似文献   

12.
Major pelvic ganglia (MPG) are relay centers for autonomic reflexes such as micturition and penile erection. MPG innervate the urogenital system, including bladder. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and may also play an important role in some peripheral autonomic ganglia, including MPG. However, the electrophysiological properties and function of GABAA receptor in MPG neurons innervating bladder remain unknown. This study examined the electrophysiological properties and functional roles of GABAA receptors in bladder-innervating neurons identified by retrograde Dil tracing. Neurons innervating bladder showed previously established parasympathetic properties, including small membrane capacitance, lack of T-type Ca2+ channel expression, and tyrosine-hydroxylase immunoreactivity. GABAA receptors were functionally expressed in bladder innervating neurons, but GABAC receptors were not. GABA elicited strong depolarization followed by increase of intracellular Ca2+ in neurons innervating bladder, supporting the hypothesis GABA may play an important role in bladder function. These results provide useful information about the autonomic function of bladder in physiological and pathological conditions.  相似文献   

13.
Summary Direct current (DC) measurement methods have been commonly used to characterize the conductance properties of the mammalian colon. However, these methods provide no information concerning the effects of tissue morphology on the electrophysiological properties of this epithelium. For example, distribution of membrane resistances along narrow fluid-filled spaces such as the lateral intercellular spaces (LIS) or colonic crypts can influence DC measurements of apical and basolateral membrane properties. We used impedance analysis to determine the extent of such distributed resistance effects and to assess the conductance and capacitance properties of the colon. Because capacitance is proportional to membrane area, this method provides new information concerning membrane areas and specific ionic conductances for these membranes.We measured transepithelial impedance under three conditions: (1) control conditions in which the epithelium was opencircuited and bathed on both sides with NaCl–HCO3 Ringer's solutions, (2) amiloride conditions which were similar to control except that 100 m amiloride was present in the mucosal bathing solution, and (3) mucosal NaCl-free conditions in which mucosal Na and Cl were replaced by potassium and sulfate or gluconate (K+ Ringer's). Three morphologically-based equivalent circuit models were used to evaluate the data: (1) a lumped model (which ignores LIS resistance), (2) a LIS distributed model (distributed basolateral membrane impedance) and (3) a crypt-distributed model (distributed apical membrane impedance). To estimate membrane impedances, an independent measurement of paracellular conductance (G s ) was incorporated in the analysis. Although distributed models yielded improved fits of the data, the distributed and lumped models produced similar estimates of membrane parameters. The predicted effects of distributed resistances on DC microelectrode measurements were largest for the LIS-distributed model. LIS-distributed effects would cause a 12–15% underestimate of membrane resistance ratio (R a /R b ) for the control and amiloride conditions and a 34% underestimate for the K Ringer's condition. Distributed resistance effects arising from the crypts would produce a 1–2% overestimate ofR a /R b .Apical and basolateral membrane impedances differed in the three different experimental conditions. For control conditions, apical membrane capacitance averaged 21 F/cm2 and the mean apical membrane specific conductance (G a-norm) was 0.17 mS/F. The average basolateral membrane capacitance was 11 F/cm2 with a mean specific conductance (G b-norm) of 1.27 mS/F.G a-norm was decreased by amiloride or K+ ringer's to 0.07 mS/gmF and 0.06 mS/F, respectively. Basolateral conductance was also reduced by amiloride, whereas capacitance was unchanged (G b-norm=0.97 mS/F). For the K+ Ringer's condition, both basolateral conductance and capacitance were greatly increased such thatG b-norm was not significantly different from the control condition.  相似文献   

14.
Ulrike Homann 《Planta》1998,206(2):329-333
Stomatal movement requires large and repetitive changes in cell volume and consequently changes in surface area. The patch-clamp technique was used to monitor changes in plasma-membrane surface area of individual guard-cell protoplasts (GCPs) by measuring membrane capacitance (Cm), a parameter proportional to the surface area. The membrane capacitance increased under hypoosmotic conditions and decreased after hypertonic treatment. As the specific capacitance remained constant, this demonstrates that osmotically induced changes in surface area are associated with incorporation and removal of membrane material. Osmotically induced fusion and fission of plasma-membrane material was not affected by removal of extracellular Ca2+. Dialysing protoplasts with very low (<2 nM) or high (1 μM) Ca2+ had no effect on changes in Cm under hypo- and hyperosmotic conditions. However, the rate of change in surface area was dependent on the size of the difference in osmotic potential applied. The larger the osmotic difference and thus changes in membrane tension caused by water influx or efflux, the faster the change in Cm. The results therefore demonstrate that osmotically induced fusion and fission of plasma-membrane material in GCPs are Ca2+-independent and modulated by membrane tension. Received: 10 February 1998 / Accepted: 21 April 1998  相似文献   

15.
Aquaporin-1 (AQP1) water channels are expressed in the plasma membrane of dorsal root ganglion (DRG) neurons. We found reduced osmotic water permeability in freshly isolated DRG neurons from AQP1−/− versus AQP1+/+ mice. Behavioral studies showed greatly reduced thermal inflammatory pain perception in AQP1−/− mice evoked by bradykinin, prostaglandin E2, and capsaicin as well as reduced cold pain perception. Patch clamp of freshly isolated DRG neurons showed reduced action potential firing in response to current injections. Single action potentials after pulse current injections showed reduced maximum inward current, suggesting impaired Nav1.8 Na+ function. Whole-cell Nav1.8 Na+ currents in Nav1.8-expressing ND7-23 cells showed slowed frequency-dependent inactivation after AQP1 transfection. Immunoprecipitation studies showed AQP1- Nav1.8 Na+ interaction, which was verified in live cells by single-particle tracking of quantum dot-labeled AQP1. Our results implicate the involvement of AQP1 in DRG neurons for the perception of inflammatory thermal pain and cold pain, whose molecular basis is accounted for, in part, by reduced Nav1.8-dependent membrane Na+ current. AQP1 is, thus, a novel target for pain management.  相似文献   

16.
Summary 1. Using conventional two-microelectrode voltage-clamp techniques we studied the effects of inorganic mercury (HgCl2) on acetylcholine-, carbachol-, and glutamate-activated currents onAplysia neurons. Hg2+ was applied with microperfusion.2. Acetylcholine and carbachol activated an inward, sodium-dependent current in the anterior neurons of the pleural ganglion. The medial neurons gave a biphasic current to acetylcholine and carbachol, which was outward at resting membrane potential. The faster component was Cl dependent and reversed at about –60 mV, while the slower component was K+ dependent and reversed at greater than –80 mV.3. Hg2+ (0.1–10 µM) caused a dramatic increase in the acetylcholine- and carbachol-induced inward current in anterior neurons and the fast Cl current in medial neurons. With only a 1-min preapplication of Hg2+, the acetylcholine- or carbachol-activated sodium or chloride currents were increased to 300% and the effect was only partly reversible. The threshold concentration was 0.1 µM Hg2+.4. Contrary to the effects on sodium and chloride currents, concentrations of 0.1–10 µM Hg2+ caused a complete and irreversible blockade of K+-dependent acetylcholine and carbachol currents. The block of the potassium current was relatively fast and increased with time. The concentration of HgCl2 that gave a half-maximal blockade of the carbachol-activated potassium current was 0.89 µM. The chloride-dependent current elicited by glutamate on medial neurons was increased by HgCl2 as well.5. These results suggest that actions at agonist-activated channels must be considered as contributing to mercury neurotoxicity. It is possible that the toxic actions of Hg2+ on synaptic transmission at both pre- and postsynaptic sites are important factors in the mechanism of Hg2+ toxicity.  相似文献   

17.
Using the patch-clamp technique in combination with sliced tissue preparation the membrane properties of newborn rabbit area postrema neurons were investigated. The neurons responded upon depolarization with a fast Na +-current followed by an inactivating and non-inactivating K +-current. GABA-activated currents were investigated resulting in a large Cl--conductance, indicating the expression of GABAA-receptors. The expression of glutamate receptor mRNA was studied by in situ hybridization and electrophysiological measurements of these receptors by means of the patch-clamp technique. As a main result it was found that ionotropic glutamate receptors in the area postrema are composed of flop variants of the GluA-, GluB- and GluC-subunits.Abbreviations AP area postrema - GABA -aminobutyric acid - Glu glutamate - I–V current-voltage - SFO subfornical organ  相似文献   

18.
Summary We examined the variability of occurrence and frequency of voltage-dependent whole-cell currents in human peripheral blood monocyte-derived macrophages (HMDM) maintained in culture for up to three weeks. An increase in cell capacitance from an average value of 9 pF on the day of isolation to 117 pF at 14 days accompanied growth and differentiation in culture. The average resting potential was approximately –34 mV for cells beyond two days in culture. Cells exhibited a voltage-and time-dependent outward current upon membrane depolarization above approximately –30 mV, which appeared to be composed of a number of separate currents with variable expression from donor to donor. Three of these currents are carried by K+. The frequency of each outward current type was calculated for 974 cells obtained from 36 donors. The HMDMs in these studies exhibited two 4-aminopyridine (4-AP) sensitive, time-dependent outward currents (I A andI B ) that could be differentiated on the basis of the presence or absence of steady-state inactivation in the physiological potential range, time course of inactivation during maintained depolarization, as well as threshold of activation. The 4-AP-insensitive outward current activated at approximately 10 mV. One component of the 4-AP insensitive-outward current (I C ) could be blocked by external TEA and by the exchange of internal Cs+ or Na+ for K+. The probability of observingI B andI C appeared to be donor dependent. Following total replacement of internal K+ with Cs+, two additional currents could be identified (i) a delayed component of outward current (I D ) remained which could be blocked by low concentrations of external Zn2+ (4 m) and was insensitive to anion replacement in the external solution and (ii) a Cl current with a reversal potential which shifted in the presence of external anion replacement and which was irreversibly inhibited by the stilbene SITS. The activation of a prominent time-independent inward currents was often observed with increasing hyperpolarization. This inward current was blocked by external Ba2+ and corresponded to the inwardly rectifying K+ current. Neither inward nor outward current expression appeared dependent on whether cells were differentiated in adherent or suspension culture nor was there demonstrable differential current expression observed upon transition from suspension to adherent form.  相似文献   

19.
Summary Parenchymal cells of oat (Avena sativa) coleoptiles had an osmotic concentration of 410 mM (determined by plasmolysis); of this only 22 mM was K+ and 1 mM Na+ (flame photometry). Cells were impaled with micropipette electrodes. Iontophoretic injection of the dye Niagara sky-blue from the micropipette showed that the tip of the electrode penetrated the vacuole. When sections of tissue were immersed in a solution of 22 mM KCl, 1 mM CaCl2, and 50 mM glucose, average membrane potential was found to be 38.5 mV inside negative specific membrane resistance was 510 cm2, and specific membrane capacitance, 2 f cm-2. The cell membranes showed <25% retification and no electrical excitability. Electrotonic coupling of adjacent cells could not be demonstrated.  相似文献   

20.
Using our results and literature data on multilocus DNA fingerprinting, we propose a method of obtaining unbiased estimates of the between-population genetic similarity index and a measure of population subdivision based on modified Wright's F ST-statistics. On the basis of multiple comparison T 2 Hotelling's test and Holmes' procedure, the F ST-statistics was applied to assess differentiation of four (Pacific and Atlantic) subpopulations of humpback whale Megaptera novaeangliae, six populations of Californian island gray fox Urocyon littoralis, and geographically isolated Ob' and Yakutia populations of Siberian white crane Crus leucogeranus. It was shown that the regional humpback whale subpopulations do not constitute a single panmictic unit (P < 10–4). The subdivision index of the Pacific and Atlantic populations expressed in terms of F-statistics varied from 0.101 to 0.157. The differentiation estimates for the island fox populations, which ranged from 0.2109 to 0.4027, indicate that subdivision of these populations is a function of the distance between the islands, island size, and population size. In particular, the smallest and the greatest differences were found respectively between the populations of the geographically closest northern islands (F ST = 0.2157, F ST = 0.2109) and between those of the most distant northern and southern islands (F ST = 0.4027, F ST = 0.3869). Subdivision of the island populations with minimum areas and low population number was intermediate (F ST = 0.3789). Mean values of heterozygosity, within-population genetic similarity index, and the number of coinciding fragments for two random individuals of Siberian white crane from the Ob' and Yakutia population were not statistically significantly different (P 0.852, P 0.491, P 0.325). However, pairwise comparisons of mean F ST values indicated that the differentiation estimates for samples from these populations fall within the limits of population subdivision (P = 0.01). The subdivision estimate (0.108–0.133) of various groups of Siberian white cranes is comparable to interregional subdivision of humpback whale. Based on the results of this study, we recommend the approach based on modified Wright's F ST-statistics for studying genetic population structure aimed at detecting population subdivision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号