首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
High risk strains of human papillomavirus (HPV), such as HPV 16, cause human cervical carcinoma. The E6 protein of HPV 16 mediates the rapid degradation of p53, although this is not the only function of E6 and cannot completely explain its transforming potential. Previous work in our laboratory has demonstrated that transfection of HPV 16 E6 into the tumor necrosis factor (TNF)-sensitive LM cell line protects expressing cells from TNF-induced apoptosis in a p53-independent manner, and the purpose of this study was to determine the molecular mechanism underlying this protection. Caspase 3 and caspase 8 activation were significantly reduced in E6-expressing cells, indicating that E6 acts early in the TNF apoptotic pathway. In fact, E6 binds directly to TNF R1, as shown both by co-immunoprecipitation and mammalian two-hybrid approaches. E6 requires the same C-terminal portion of TNF R1 for binding as does TNF R1-associated death domain, and TNF R1/TNF R1-associated death domain interactions are decreased in the presence of E6. HA-E6 also blocked cell death triggered by transfection of the death domain of TNF R1. Together, these results provide strong support for a model in which HPV E6 binding to TNF R1 interferes with formation of the death-inducing signaling complex and thus with transduction of proapoptotic signals. They also demonstrate that HPV, like several other viruses, has developed a method for evading the TNF-mediated host immune response.  相似文献   

3.
Although ovaries serve as the primary source of estrogen for pre-menopausal women, after menopause estrogen biosynthesis from circulating precursors occurs in peripheral tissues by the action of several enzymes, 17beta-hydroxysteroid dehydrogenase 1 (17beta-HSD1), aromatase and estrogen sulfatase. In the breast, both normal and tumoral tissues have been shown to be capable of synthesizing estrogens, and this local estrogen production can be implicated in the development of breast tumors. In these tissues, estradiol (E(2)) can be synthesized by three pathways: (1) estrone sulfatase transforms estrogen sulfates into bioactive estrogens, (2) 17beta-HSD1 converts estrone (E(1)) into E(2), (3) aromatase which converts androgens into estrogens is also present and contributes to the in situ synthesis of active estrogens but to a far lesser extent than estrone sulfatase. Quantitative assessment of E(2) formation in human breast tumors indicates that metabolism of estrone sulfate (E(1)S) via the sulfatase pathway produces 100-500 times more E(2) than androgen aromatization. Breast tissue also possesses the estrogen sulfotransferase involved in the conversion of estrogens into their sulfates that are biologically inactive. In the present review, we summarized the action of the 19-nor-progestin nomegestrol acetate (NOMAC) on the sulfatase, 17beta-HSD1 and sulfotransferase activities in the hormone-dependent MCF-7 and T47-D human breast cancer cell lines. Using physiological doses of substrates NOMAC blocks very significantly the conversion of E(1)S to E(2). It inhibits the transformation of E(1) to E(2). NOMAC has a stimulatory effect on sulfotransferase activity in both cell lines, with a strong stimulating effect at low doses but only a weak effect at high concentrations. The effects on the three enzymes are always stronger in the progesterone-receptor rich T47-D cell line as compared with the MCF-7 cell line. Besides, no effect is found for NOMAC on the transformation of androstenedione to E(1) in the aromatase-rich choriocarcinoma cell line JEG-3. In conclusion, the inhibitory effect provoked by NOMAC on the enzymes involved in the biosynthesis of E(2) (sulfatase and 17HSD pathways) in estrogen-dependent breast cancer, as well as the stimulatory effect on the formation of the inactive E(1)S, can open attractive perspectives for future clinical trials.  相似文献   

4.
The introduction of the adenovirus early region 1A (E1A) gene products into normal cells sensitizes these cells to the cytotoxic effects of tumor necrosis factor (TNF). Previous studies have shown that the region of E1A responsible for susceptibility is CR1, a conserved region within E1A which binds the cellular proteins p300 and p105-Rb at nonoverlapping sites. Binding of these and other cellular proteins by E1A results in the induction of E1A-associated activities such as transformation, immortalization, DNA synthesis, and apoptosis. To investigate the mechanism by which E1A induces susceptibility to TNF, the NIH 3T3 mouse fibroblast cell line was infected with viruses containing mutations within E1A which abrogate binding of some or all of the cellular proteins to E1A. The results show that TNF susceptibility is induced by E1A binding to either p300 or p105-Rb. E1A mutants that bind neither p300 nor p105-Rb do not induce susceptibility to TNF. Experiments with stable cell lines created by transfection with either wild-type or mutant E1A lead to these same conclusions. In addition, a correlation between induction of DNA synthesis and induction of TNF sensitivity is seen. Only viruses which induce DNA synthesis can induce TNF sensitivity. Those viruses which do not induce DNA synthesis also do not induce TNF sensitivity. These data suggest that the mechanisms underlying induction of susceptibility to TNF by E1A are intimately connected to E1A's capacity to override cell cycle controls.  相似文献   

5.
NIH-3T3 cells transfected with adenovirus E1A oncogene cDNA were found to exhibit cytolytic susceptibility to murine NK cells and activated macrophages associated with a threshold level of oncogene product expression exceeding that required for morphological transformation. A similar correlation was observed between threshold levels of E1A gene product expression and target cell susceptibility to direct cytotoxicity by rTNF. Inhibition of splenic NK cell and peritoneal macrophage cytolysis by antisera specific for murine rTNF confirmed the importance of E1A-induced TNF susceptibility as one determinant of target cell cytolytic susceptibility. Anti-TNF antibody was, however, unable to block killing of E1A-expressing targets by the NK cell line, NKB61A2. These results suggest a direct link between the functions of E1A oncogene products and cellular mechanisms of action of TNF elaborated by host effector cells and indicate that E1A expression also affects target cell susceptibility to TNF-independent cytolytic mechanisms.  相似文献   

6.
Summary By transfection of an expression vector of human cytochrome P450 2E1 (CYP2E1) into a human hepatoma cell line (HLE), a new cell line (HLE/2E1) that stably expresses activity of CYP2E1 has been established. The HLE/2E1 cell line expressed a higher level of CYP2E1 messenger ribonucleic acid than did the mother HLE cell line. CYP2E1 enzyme activity determined by ap-nitrophenol oxidation assay was also higher in HLE/2E1 cells than in HLE cells. In addition, the enzyme activity of the HLE/2E1 cells was increased by ethanol treatment. Exposure to acetaminophen (APAP) or buthionine sulfoximine (BSO) caused a greater decrease in viability of the HLE/2E1 cells than that of the HLE cells, as determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. The cytotoxicity of APAP or BSO to HLE/2E1 cells was inhibited by the addition of ethanol or vitamin E. However, the cytotoxicity of both APAP and BSO was enhanced by 24-h preincubation of HLE/2E1 cells with ethanol. These results show that this cell line provides a useful model for studying catalytic properties of CYP2E1 and cytotoxic mechanisms of chemicals metabolized by CYP2E1.  相似文献   

7.
cDNA of human natural TNF (n-TNF) obtained by stimulating human leukemic B cell line (Ball-1) with Sendai virus was cloned. Valine-started-TNF (V-TNF) gene was constructed from the cDNA and expressed in E.coli HB101 under the control of a trp promoter by the induction of 3-indoleacrylic acid. The expression level of V-TNF clone was about 10% of the total E.coli protein. On the other hand, the expression level of glutamine started-TNF (Q-TNF) gene having the same SD-ATG sequence which was constructed from V-TNF gene was as low as about 1/20 of that of V-TNF. The nucleotide sequence around ATG (-4 approximately +12) of Q-TNF gene was randomly changed without modifying the coded amino acid sequence, resulting to obtain high expression clones as similar TNF protein yield as that of V-TNF. These clones possessed A residue rich sequence around the initiation codon ATG. These results show that some correlation might exist between the high expression rate and A residue rich sequence around the initiation codon.  相似文献   

8.
研究采用同时检测15种自由态雌激素(Free estrogens, FEs)及结合态雌激素(Conjugated estrogens, CEs; 包括雌激素手性分子、异构体、单位点及多位点结合的CEs)的方法, 探讨目标污染物17β-estradiol-3-sulfate (E2-3S)与其他类型雌激素(包括自由态雌激素与其他结合态雌激素)间的转化关系, 研究E2-3S在有/无植物水平流人工湿地(HFCWs)中的降解规律。结果显示: 在停留时间为1.5d的工况下, E2-3S在HFCWs进水端基质水平距离0 cm深度15 cm中转化率已达98%, E2-3S可转化为其他雌激素, 产物以FEs为最丰富(均占70%以上), 植物可以显著提高湿地DO浓度, 使FEs残留浓度比无植物CW(U-CW)更低, 有植物CW(P-CW)和U-CW对总雌激素去除效率分别为86%和58%; E2-3S的主要转化路径为经硫酯键断裂形成E2再氧化生成E1, 其次路径为直接氧化为E1-3S再水解生成E1, 少量路径为羟基化形成E3-3S再水解生成E3, 此外, E2-3S还可以产生痕量双位取代D-CEs(<总雌激素的5%), 且植物系统中存留量更低。  相似文献   

9.
10.
We have previously described a 14,700 m.w. protein (14.7K) encoded by the E3 region of adenovirus that prevents TNF-mediated cytolysis of adenovirus-infected C3HA mouse fibroblasts. In the studies described here we have extended our analysis of TNF cytolysis of C3HA cells and the circumstances under which 14.7K protects these cells from cytolysis. C3HA cells were killed by TNF in the presence of inhibitors of protein synthesis, in the presence of cytochalasin E (which disrupts the microfilaments), and when adenovirus E1A was expressed. As described for other cell types, pretreatment of C3HA cells with TNF prevented cytolysis by TNF plus cycloheximide or TNF plus cytochalasin E, indicating that TNF induces a response that protects against these treatments. Remarkably, when 14.7K was expressed in virus-infected cells, it also prevented TNF-induced lysis whether sensitivity to TNF was induced by inhibition of protein synthesis, disruption of the cytoskeleton by cytochalasin E, or expression of adenovirus E1A. The 14.7K protein also prevented TNF lysis of cells that are spontaneously sensitive to TNF lysis. Thus, 14.7K appears to be a general inhibitor of TNF cytolysis, and as such should be an important tool in unraveling the mechanism of TNF cytolysis. There was one exception; NCTC-929 cells were spontaneously sensitive to TNF lysis and that lysis was not affected by 14.7K even though the protein was made in large quantities and was metabolically stable in these cells. This suggests that there is heterogeneity among TNF-sensitive cell lines. The 14.7K protein was found in both the nuclear and cytosol fractions of TNF resistant as well as all spontaneously sensitive cells suggesting that 14.7K may have more than one site of action within the cell.  相似文献   

11.
It was evident that nitrosamines can act directly on target tissue and result in carcinogenesis. As has been shown, the carcinogenic activity of nitrosamines relied on its bioactivation by Cytochrome P450 2E1 (CYP2E1). In this study, we investigated the expression of CYP2E1 in Nasopharyngeal carcinoma (NPC) cells, embryonic nasopharyngeal epithelial tissue (ENET) specimens, and NPC biopsies by RT-PCR analysis. CYP2E1 was expressed in all NPC cell lines (6/6, including 7429) and ENET (6/6), and 80% of NPC biopsie (8/10). The fact that Human nasopharynx expresses CYP2E1 suggests that CYP2E1 may play an important role in the course of NPC by indirect carcinogens nitrosamines. To further evaluate the function of CYP2E1, the CYP2E1 was stably expressed in the cell line NIH 3T3/rtTA under a tetracycline-controlled transactivator. The expression of CYP2E1 was tightly regulated in a dose-dependent manner by Doxycycline (Dox) When the catalytic activity of CYP2E1 was assayed, the result showed that the generation of 6-hydroxychlorzoxazone (6-OH-CZ) from chlorzoxazone (CZ) was dose- and time-dependent on Dox addition to the medium. In the presence of 1 μg/ml Dox, the CZ 6-hydroxylase activity of the cell line was found to be 0.986 ± 0.034 nmol/106 cells/h. The metabolic activation of Tet/3T3/2E1-6 cells was also assayed by N,N′-dinitrosopiperazine (DNP) cytotoxicity, and the viability of Tet/3T3/2E1-6 cells treated with Dox was lower than that of untreated cells with a significant difference between them in 80 and 160 μg/ml DNP (P ( 0.05, t test. This cell line will be useful not only to assess the metabolic characteristics of CYP2E1, but also will be useful to investigate the role of CYP2E1 in metabolic activation of carcinogenic nitrosamines in vitro.  相似文献   

12.
Production of prostaglandins (PGs) and expression of their receptors have been demonstrated in bovine corpus luteum (CL). The aim of the present study was to determine whether PGE2 and PGF2alpha have roles in bovine luteal steroidogenic cell (LSC) apoptosis. Cultured bovine LSCs obtained at the midluteal stage (Days 8-12 of the cycle) were treated for 24 h with PGE2 (0.001-1 microM) and PGF2alpha (0.001-1 microM). Prostaglandin E2 (1 microM) and PGF2alpha (1 microM) significantly stimulated progesterone (P4) production and reduced the levels of cell death in the cells cultured with or without tumor necrosis factor alpha (TNF)/interferon gamma (IFNG), in the presence and absence of FAS ligand (P < 0.05). Furthermore, DNA fragmentation induced by TNF/IFNG was observed to be suppressed by PGE2 and PGF2alpha. Prostaglandin E2 and PGF2alpha also attenuated mRNA expression of caspase 3 and caspase 8, as well as caspase 3 activity (P < 0.05) in TNF/IFNG-treated cells. FAS mRNA and protein expression were decreased only by PGF2alpha (P < 0.05). A specific P4 receptor antagonist (onapristone) attenuated the apoptosis-inhibitory effects of PGE2 and PGF2alpha in the absence of TNF/IFNG (P < 0.05). A PG synthesis inhibitor (indomethacin) reduced cell viability in PGE2- and PGF2alpha-treated cells (P < 0.05). A specific inhibitor of cyclooxygenase (PTGS), PTGS2 (NS-398), also reduced cell viability, whereas an inhibitor of PTGS1 (FR122047) did not affect it. The overall results suggest that PGE2 and PGF2alpha locally play luteoprotective roles in bovine CL by suppressing apoptosis of LSCs.  相似文献   

13.
The adenovirus (Ad) early gene product 13S transactivates the tumor necrosis factor (TNF)-alpha promoter in inflammatory cells. We examined both the subdomains of E1A and the upstream TNF promoter elements involved. In both Jurkat and U-937 cells, zinc finger or carboxyl region mutation of Ad E1A 13S conserved region 3 resulted in a significant loss of transactivation of the TNF promoter (> or =69%). For both cell types there was a TNF-negative regulatory element in the -242 to -199 region and a positive regulatory element between -199 and -118. In contrast, an upstream positive regulatory element was detected in different regions in both cell types. In U-937 cells the positive regulatory unit was between -600 and -576, whereas in Jurkat cells it was between -576 and -242. The U-937 upstream element was dependent on a site previously designated epsilon in cooperation with an adjacent nuclear factor-kappaB-2a site. Therefore, transactivation of the TNF promoter by Ad 13S in lymphocyte and monocyte cell types involves similar subdomains of the E1A protein, but cell-specific TNF promoter elements.  相似文献   

14.
15.
16.
17.
We have reported that the E3 14,700-dalton protein (E3 14.7K protein) protects adenovirus-infected mouse C3HA fibroblasts against lysis by tumor necrosis factor (TNF) (L. R. Gooding, L. W. Elmore, A. E. Tollefson, H. A. Brady, and W. S. M. Wold, Cell 53:341-346, 1988). We have also observed that the E1B 19K protein protects adenovirus-infected human but not mouse cells against TNF lysis (L. R. Gooding, L. Aquino, P. J. Duerksen-Hughes, D. Day, T. M. Horton, S. Yei, and W. S. M. Wold, J. Virol. 65:3083-3094, 1991). We now report that, in the absence of E3 14.7K, the E3 10.4K and E3 14.5K proteins are both required to protect C127 as well as several other mouse cell lines against TNF lysis. The 14.7K protein can also protect these cells from TNF in the absence of the 10.4K and 14.5K proteins. This protection by the 10.4K and 14.5K proteins was not observed in the C3HA cell line. These conclusions are based on 51Cr release assays of cells infected with virus E3 mutants that express the 14.7K protein alone, that express both the 10.4K and 14.5K proteins, and that delete the 14.7K in combination with either the 10.4K or 14.5K protein. The 10.4K protein was efficiently coimmunoprecipitated together with the 14.5K protein by using an antiserum to the 14.5K protein, suggesting that the 10.4K and 14.5K proteins exist as a complex in the infected mouse cells and consistent with the notion that they function in concert. Considering that three sets of proteins (E3 14.7K, E1B 19K, and E3 10.4K/14.5K proteins) exist in adenovirus to prevent TNF cytolysis of different cell types, it would appear that TNF is a major antiadenovirus defense of the host.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号