首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient in vivo translocation of the precursor of Escherichia coli outer membrane protein PhoE across the inner membrane is shown to depend on SecB protein. A set of mutants, carrying internal deletions in the phoE gene, was used to locate a possible SecB-binding site and/or a site that makes the protein dependent on SecB for export. Except for two small mutant PhoE proteins, the in vivo and in vitro translocation of all mutant proteins was more efficient in the presence of SecB. The interaction of SecB protein with wild-type and mutant PhoE proteins, synthesized in vitro, was further studied in co-immunoprecipitation experiments with anti-SecB protein serum. The efficiencies of co-immunoprecipitation of precursor and mature PhoE were very similar, indicating the absence of a SecB-binding site in the signal sequence. Moreover, all mutant proteins with deletions in the mature moiety of the PhoE protein were co-immunoprecipitated in these assays, albeit mostly with reduced efficiency. Taken together, these results indicate the existence of multiple SecB-binding sites in the mature portion of the PhoE protein.  相似文献   

2.
To investigate the role of the cell surface-exposed regions of outer membrane protein PhoE of Escherichia coli K12 in the biogenesis of the protein, deletions were generated in two presumed cell surface-exposed regions of the protein. Intact cells expressing these mutant proteins were recognized by PhoE-specific monoclonal antibodies, which recognize conformational epitopes on the cell surface-exposed parts of the protein and/or were sensitive to a PhoE-specific phage. This shows that the polypeptides were normally incorporated into the outer membrane. When the deletions extended four amino acid residues into the seventh presumed membrane-spanning segment, the polypeptides accumulated in the periplasm. In conclusion, exposed regions of PhoE protein apparently do not play an essential role in outer membrane localization, which is consistent with the observation that these regions are hypervariable when PhoE is compared to the related proteins OmpF and OmpC. In contrast, the membrane-spanning segments are essential for the assembly process.  相似文献   

3.
Spheroplasts were used to study the early interactions of newly synthesized outer membrane protein PhoE with periplasmic proteins employing a protein cross-linking approach. Newly translocated PhoE protein could be cross-linked to the periplasmic chaperone Skp at the periplasmic side of the inner membrane. To study the timing of this interaction, a PhoE-dihydrofolate reductase hybrid protein was constructed that formed translocation intermediates, which had the PhoE moiety present in the periplasm and the dihydrofolate reductase moiety tightly folded in the cytoplasm. The hybrid protein was found to cross-link to Skp, indicating that PhoE closely interacts with the chaperone when the protein is still in a transmembrane orientation in the translocase. Removal of N-terminal parts of PhoE protein affected Skp binding in a cumulative manner, consistent with the presence of two Skp-binding sites in that region. In contrast, deletion of C-terminal parts resulted in variable interactions with Skp, suggesting that interaction of Skp with the N-terminal region is influenced by parts of the C terminus of PhoE protein. Both the soluble as well as the membrane-associated Skp protein were found to interact with PhoE. The latter form is proposed to be involved in the initial interaction with the N-terminal regions of the outer membrane protein.  相似文献   

4.
In order to localize the information within PhoE protein of Escherichia coli K-12 required for export of the protein to the outer membrane, we have generated deletions throughout the phoE gene. Immunocytochemical labelling on ultrathin cryosections revealed that the polypeptides encoded by the mutant alleles are transported to, and accumulate in, the periplasm. These results show that, except for the signal sequence, there is no specific sequence within the PhoE protein that is essential for transport through the cytoplasmic membrane. The overall structure of the protein, rather than a particular sequence of amino acids, seems to be important for assembly into the outer membrane.  相似文献   

5.
6.
Expression of a recently constructed bla-phoE hybrid gene results in synthesis and incorporation into the outer membrane of PhoE protein containing an amino-terminal extension of 158 amino acid residues of beta-lactamase (Tommassen et al., EMBO J. 2:1275-1279, 1983). As the PhoE protein part of this hybrid protein is apparently normally incorporated into the outer membrane, the beta-lactamase part of the protein can be considered as a label of the amino terminus of PhoE protein. By using trypsin accessibility experiments, this beta-lactamase part was shown to be located at the periplasmic side of the membrane. Therefore, the amino terminus of PhoE protein most likely faces the periplasm.  相似文献   

7.
To test the importance of N-terminal pre-sequences in translocation of different classes of membrane proteins, we exchanged the normal signal sequence of an Escherichia coli outer membrane protein, OmpF, for the pre-sequence of the inner membrane protein, DacA. The DacA-OmpF hybrid was efficiently assembled into the outer membrane in a functionally active form. Thus the pre-sequence of DacA, despite its relatively low hydrophobicity compared with that of OmpF, contains all the essential information necessary to initiate the translocation of OmpF to the outer membrane. Since processing of DacA was also shown to be dependent upon SecA we conclude that the initiation of translocation of this inner membrane polypeptide across the envelope occurs by the same mechanism as outer membrane and periplasmic proteins. The N-terminal 11 amino acids of mature OmpF, which in the hybrid are replaced by the N-terminal nine amino acids of DacA, carry no essential assembly signals since the hybrid protein is apparently assembled with equal efficiency to OmpF.  相似文献   

8.
Signal sequences frequently contain α-helix-destabilizing amino acids in the hydrophobic core. Nuclear magnetic resonance studies on the conformation of signal sequences in membrane mimetic environments revealed that these residues cause a break in the α-helix. In the precursor of the Escherichia coli outer membrane protein PhoE (pre-PhoE), a glycine residue at position -10 (Gly?10) is thought to be responsible for the break in the α-helix. We investigated the role of this glycine residue in the translocation process by employing site-directed mutagenesis. SDS-PAGE analysis showed drastic variations in the electrophoretic mobilities of the mutant precursor proteins, suggesting an important role of the glycine residue in determining the conformation of the signal sequence. In vivo, no drastic differences in the translocation kinetics were observed as compared with wild-type PhoE, except when a charged residue (Arg) was substituted for Gly?10. However, the in vitro translocation of all mutant proteins into inverted inner-membrane vesicles was affected. Two classes of precursors could be distinguished. Translocation of one class of mutant proteins (Ala, Cys and Leu for Gly?10) was almost independent of the presence of a ΔμH+, whereas translocation of the other class of precursors (wild type or Ser) was strongly decreased in the absence of the ΔμH+. Apparently, the ΔμH+ dependency of in vitro protein translocation varies with the signal-sequence core-region composition. Furthermore, a proline residue at position -10 resulted in a signal sequence that did not prevent the folding of the precursor in an in vitro trimerization assay.  相似文献   

9.
J Tommassen  T de Kroon 《FEBS letters》1987,221(2):226-230
Protease accessibility experiments were employed to localize a PhoE-LacZ hybrid protein, encompassing a large N-terminal fragment of the outer membrane PhoE protein of E. coli, fused to beta-galactosidase, at the subcellular level. In previous studies, this protein was shown to co-fractionate with the outer membrane, whereas immunocytochemical methods suggested a cytoplasmic location. The present results confirm the latter localization. Moreover, it appears that a minor amount of hybrid protein spans the inner membrane, with the PhoE moiety in the periplasm and the beta-galactosidase moiety in the cytoplasm. These membrane-spanning proteins might be responsible for the lethal jamming of the export machinery, observed upon induction of synthesis of the protein.  相似文献   

10.
K Nakai  M Kanehisa 《Proteins》1991,11(2):95-110
We have developed an expert system that makes use of various kinds of knowledge organized as "if-then" rules for predicting protein localization sites in Gram-negative bacteria, given the amino acid sequence information alone. We considered four localization sites: the cytoplasm, the inner (cytoplasmic) membrane, the periplasm, and the outer membrane. Most rules were derived from experimental observations. For example, the rule to recognize an inner membrane protein is the presence of either a hydrophobic stretch in the predicted mature protein or an uncleavable N-terminal signal sequence. Lipoproteins are first recognized by a consensus pattern and then assumed present at either the inner or outer membrane. These two possibilities are further discriminated by examining an acidic residue in the mature N-terminal portion. Furthermore, we found an empirical rule that periplasmic and outer membrane proteins were successfully discriminated by their different amino acid composition. Overall, our system could predict 83% of the localization sites of proteins in our database.  相似文献   

11.
Bacterial outer membrane proteins are supposed to span the membrane repeatedly, mostly in the form of amphipathic beta-sheets. The last ten C-terminal amino acid residues of PhoE protein are supposed to form such a membrane-spanning segment. Deletion of this segment completely prevents incorporation into the outer membrane. Comparison of the last ten amino acid residues of other outer membrane proteins from different Gram-negative bacteria revealed the presence of a potential amphipathic beta-sheet with hydrophobic residues at positions 1 (Phe), 3 (preferentially Tyr), 5, 7 and 9 from the C terminus, in the vast majority of these proteins. Since such sequences were not detected at the C termini of periplasmic proteins, it appears to be possible to discriminate between the majority of outer membrane proteins and periplasmic proteins on the basis of sequence data. The highly conserved phenylalanine at the C termini of outer membrane proteins suggests an important function for this amino acid in assembly into the outer membrane. Site-directed mutagenesis was applied to study the role of the C-terminal Phe in PhoE protein assembly. All mutant proteins were correctly incorporated into the outer membrane to some extent, but the efficiency of the process was severely affected. It appears that both the hydrophobicity and the aromatic nature of Phe are of importance.  相似文献   

12.
E F Eppens  N Nouwen    J Tommassen 《The EMBO journal》1997,16(14):4295-4301
The transport of bacterial outer membrane proteins to their destination might be either a one-step process via the contact zones between the inner and outer membrane or a two-step process, implicating a periplasmic intermediate that inserts into the membrane. Furthermore, folding might precede insertion or vice versa. To address these questions, we have made use of the known 3D-structure of the trimeric porin PhoE of Escherichia coli to engineer intramolecular disulfide bridges into this protein at positions that are not exposed to the periplasm once the protein is correctly assembled. The mutations did not interfere with the biogenesis of the protein, and disulfide bond formation appeared to be dependent on the periplasmic enzyme DsbA, which catalyzes disulfide bond formation in the periplasm. This proves that the protein passes through the periplasm on its way to the outer membrane. Furthermore, since the disulfide bonds create elements of tertiary structure within the mutant proteins, it appears that these proteins are at least partially folded before they insert into the outer membrane.  相似文献   

13.
K Ko  A R Cashmore 《The EMBO journal》1989,8(11):3187-3194
Various chimeric precursors and deletions of the 33 kd oxygen-evolving protein (OEE1) were constructed to study the mechanism by which chloroplast proteins are imported and targeted to the thylakoid lumen. The native OEE1 precursor was imported into isolated chloroplasts, processed and localized in the thylakoid lumen. Replacement of the OEE1 transit peptide with the transit peptide of the small subunit of ribulose-1,5-bisphosphate carboxylase, a stromal protein, resulted in redirection of mature OEE1 into the stromal compartment of the chloroplast. Utilizing chimeric transit peptides and block deletions we demonstrated that the 85 residue OEE1 transit peptide contains separate signal domains for importing and targeting the thylakoid lumen. The importing domain, which mediates translocation across the two membranes of the chloroplast envelope, is present in the N-terminal 58 amino acids. The thylakoid lumen targeting domain, which mediates translocation across the thylakoid membrane, is located within the C-terminal 27 residues of the OEE1 transit peptide. Chimeric precursors were constructed and used in in vitro import experiments to demonstrate that the OEE1 transit peptide is capable of importing and targeting foreign proteins to the thylakoid lumen.  相似文献   

14.
The channel-forming protein aerolysin must cross both the inner and outer bacterial membranes during its secretion from Aeromonas hydrophila or from Aeromonas salmonicida containing the cloned structural gene. We examined the fate of three mutant proteins in which Trp-227, near the middle of the amino acid chain, was replaced with glycine, leucine, or phenylalanine by site-directed mutagenesis. All three proteins crossed the inner membrane and entered the periplasm in the same way as wild-type, and in each case the signal sequence was removed correctly. Little or none of the proaerolysin substituted with glycine or leucine was released into the culture supernatant. Instead, significant amounts became associated with the outer membrane. The Phe-227 protoxin was secreted by the bacteria but at a reduced rate. The leucine and phenylalanine mutant proteins were purified and compared with native proaerolysin. They were processed correctly to the mature forms by treatment with trypsin, and like native aerolysin, both were resistant to further proteolysis. In each case, processing was followed by the formation of oligomers similar to those produced by native toxin. The hemolytic activity of the processed Phe-227 mutant was one-quarter that of wild-type toxin whereas Leu-227 aerolysin had less than one-hundredth the wild-type activity. These results are further evidence that aerolysin is secreted in at least two steps. As well, they show that the last step, crossing the outer membrane, can be blocked by an apparently small change in the structure of the protein.  相似文献   

15.
H M Lu  S Mizushima    S Lory 《Journal of bacteriology》1993,175(22):7463-7467
Pseudomonas aeruginosa exotoxin A is synthesized with a secretion signal peptide typical of proteins whose final destination is the periplasm. However, exotoxin A is released from the cell without a detectable periplasmic pool, suggesting that additional determinants in this protein are important for recognition by a specialized machinery of extracellular secretion. The role of the N terminus of the mature exotoxin A in this recognition was investigated. A series of exotoxin A proteins with amino acid substitutions for the glutamic acid pair at the +2 and +3 positions were constructed by mutagenesis of the exotoxin A gene. These N-terminal acidic residues of the mature exotoxin A protein were found to be important not only for efficient processing of the precursor protein but also for extracellular localization of the toxin. The mutated exotoxin A proteins, in which a glutamic acid at the +2 position was replaced by a lysine or a double substitution of lysine and glutamine for the pair of adjacent glutamic acids, accumulated in precursor forms in the mixed cytoplasmic and membrane fractions, which was not seen with the wild-type exotoxin A. The processing of the precursor form of one exotoxin A mutant, in which the glutamic acid at the +2 position was replaced with a glutamine, was not affected. Moreover, a substantial fraction of the mature forms of all three mutants of exotoxin A accumulated in the periplasm, while wild-type exotoxin A could be detected only extracellularly. The periplasmic pools of these variants of exotoxin A could therefore represent the intermediate state during extracellular secretion. The signal for extracellular localization may be located in a small region near the amino terminus of the mature protein or could consist of several regions that are brought together after the polypeptide has folded. Alternatively, the acidic residues may be important for ensuring a conformation essential for exotoxin A to traverse the outer membrane.  相似文献   

16.
Heat-stable enterotoxin Ip (STIp) of Escherichia coli is synthesized as a precursor form consisting of pre- (amino acid residues 1 to 19), pro- (amino acid residues 20 to 54) and mature (amino acid residues 55 to 72) regions. Mature STIp (bioactive STIp) is formed in the periplasmic space after the precursor is proteolytically processed and the mature STIp translocates across the outer membrane through the secretory system including TolC, an outer membrane protein of E. coli. However, it remains unknown how the mature STIp is recognized by this secretory system. In this study, we investigated the amino acid residues of STIp involved in its translocation across the outer membrane. We prepared mutant STIp genes by site-directed mutagenesis and analyzed translocation of the mutant STIps across the outer membrane. Deletion of the Phe or Tyr residue at position 3 or 18, respectively, decreased the efficiency of translocation of STIp across the outer membrane. To confirm the involvement of these amino acid residues, we further mutated the codons for these amino acid residues to that for Gly. These mutations also decreased the efficiency of extracellular secretion of STIp. In contrast, substitution of Phe-3 and Syr-18 with Tyr and Phe, respectively, did not affect the efficiency of translocation of the toxin. These results indicated that the aromatic amino acid residues at positions 3 and 18 in the mature region are important for the ability of STIp to cross the outer membrane.  相似文献   

17.
The small subunit (SSU) of Rubisco is synthesized in the cytosol in a precursor form. Upon import into the chloroplast, it is proteolytically processed at a Cys-Met bond to yield the mature form of the protein. To assess the importance of the Met residue for recognition and processing by the stromal peptidase, we substituted this residue with either Thr, Arg or Asp. The mutant precursor proteins were imported into isolated chloroplasts, and the products of the import reactions were analyzed. Mutants containing Thr or Arg residues at the putative processing site were processed to a single peptide, comigrating with the wild-type protein. N-terminal radio-sequencing revealed that these mutants were processed at the Cys-Thr and the Cys-Arg bond, respectively. After import of the Asp-containing mutant, four processed forms of the protein were observed. Analysis of the most abundant one, co-migrating with the wild-type protein, demonstrated that this species was also a product of correct processing, at the Cys-Asp bond. All the correctly processed peptides were found to be associated with the holoenzyme of Rubisco, and remained stable within the chloroplast, like the wild-type protein. The results of this study, together with previous ones, suggest that proper recognition and processing of the SSU precursor are more affected by residues N-terminal to the processing site than by the residue on the C-terminal side of this site.  相似文献   

18.
Summary The gene ompA encodes a major outer membrane protein of Escherichia coli. Localized mutagenesis of the part of the gene corresponding to the 21-residue signal sequence and the first 45 residues of the protein resulted in alterations which caused cell lysis when expressed. DNA sequence analyses revealed that in one mutant type the last CO2H-terminal residue of the signal sequence, alanine, was replaced by valine. The proteolytic removal of the signal peptide was much delayed and most of the unprocessed precursor protein was fractioned with the outer membrane. However, this precursor was completely soluble in sodium lauryl sarcosinate which does not solubilize the OmpA protein or fragments thereof present in the outer membrane. Synthesis of the mutant protein did not inhibit processing of the OmpA or OmpF proteins. In the other mutant type, multiple mutational alterations had occurred leading to four amino acid substitutions in the signal sequence and two affecting the first two residues of the mature protein. A reduced rate of processing could not be clearly demonstrated. Membrane fractionation suggested that small amounts of this precursor were associated with the plasma membrane but synthesis of this mutant protein also did not inhibit processing of the wild-type OmpA or OmpF proteins. Several lines of evidence left no doubt that the mature, mutant protein is stably incorporated into the outer membrane. It is suggested that the presence, in the outer membrane, of the mutant precursor protein in the former case, or of the mutant protein in the latter case perturbs the membrane architecture enough to cause cell death.  相似文献   

19.
A phoE-lacZ hybrid gene encoding the N-terminal 300 amino acid residues of pre-PhoE protein, fused to an almost complete beta-galactosidase molecule was constructed in vitro. Cell fractionation experiments suggested that the hybrid gene product is transported to the outer membrane. However, by using immuno-cytochemical labelling on ultra-thin cryosections it was shown that the hybrid protein accumulated in the cytoplasm. Thus, it appears that: (i) data on the localization of hybrid proteins merely based on cell fractionation experiments are not reliable, and (ii) either the C-terminal 15% of PhoE protein contain information which is essential for transport, or PhoE-LacZ hybrid proteins can never be transported out of the cytoplasm. The implications of these results for current models on the translocation of outer membrane proteins are discussed.  相似文献   

20.
Defective Escherichia coli signal peptides function in yeast   总被引:3,自引:2,他引:1  
To investigate structural characteristics important for eukaryotic signal peptide function in vivo, a hybrid gene with interchangeable signal peptides was cloned into yeast. The hybrid gene encoded nine residues from the amino terminus of the major Escherichia coli lipoprotein, attached to the amino terminus of the entire mature E. coli beta-lactamase sequence. To this sequence were attached sequences encoding the nonmutant E. coli lipoprotein signal peptide, or lipoprotein signal peptide mutants lacking an amino-terminal cationic charge, with shortened hydrophobic core, with altered potential helicity, or with an altered signal-peptide cleavage site. These signal-peptide mutants exhibited altered processing and secretion in E. coli. Using the GAL10 promoter, production of all hybrid proteins was induced to constitute 4-5% of the total yeast protein. Hybrid proteins with mutant signal peptides that show altered processing and secretion in E. coli, were processed and translocated to a similar degree as the non-mutant hybrid protein in yeast (approximately 36% of the total hybrid protein). Both non-mutant and mutant signal peptides appeared to be removed at the same unique site between cysteine 21 and serine 22, one residue from the E. coli signal peptidase II processing site. The mature lipo-beta-lactamase was translocated across the cytoplasmic membrane into the yeast periplasm. Thus the protein secretion apparatus in yeast recognizes the lipoprotein signal sequence in vivo but displays a specificity towards altered signal sequences which differs from that of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号