首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In skeletal muscle, adenosine monophosphate (AMP) is mainly deaminated by AMP deaminase. However, the C34T mutation in the AMPD1 gene severely reduces AMP deaminase activity. Alternatively, intracellular AMP is dephosphorylated to adenosine via cytosolic AMP 5'-nucleotidase (cN-I). In individuals with a homozygous C34T mutation, cN-I might be a more important pathway for AMP removal. We determined activities of AMP deaminase, cN-I, total cytosolic 5'-nucleotidase (total cN), ecto-5'-nucleotidase (ectoN) and whole homogenate 5'-nucleotidase activity in skeletal muscle biopsies from patients with different AMPD1 genotypes [homozygotes for C34T mutation (TT); heterozygotes for C34T mutation (CT); and homozygotes for wild type (CC): diseased controls CC; and normal controls CC]. AMP deaminase activity showed genotype-dependent differences. Total cN activity in normal controls accounted for 57+/-22% of whole homogenate 5'-nucleotidase activity and was not significantly different from the other groups. A weak inverse correlation was found between AMP deaminase and cN-I activities (r2=0.18, p<0.01). There were no significant differences between different groups in the activities of cN-I, whole homogenate 5'-nucleotidase and ectoN, or in cN-I expression on Western blots. No correlation for age, fibre type distribution and AMPD1 genotype was found for whole homogenate nucleotidase, total cN and cN-I using multiple linear regression analysis. There was no gender-specific difference in the activities of whole homogenate nucleotidase, total cN and cN-I. The results indicate no changes in the relative expression or catalytic behaviour of cN-I in AMP deaminase-deficient human skeletal muscle, but suggest that increased turnover of AMP by cN-I in working skeletal muscle is due to higher substrate availability of AMP.  相似文献   

2.
Adenosine increases blood flow and decreases excitatory nerve firing. In the heart, it reduces rate and force of contraction and preconditions the heart against injury by prolonged ischemia. Based on indirect kinetic arguments, an AMP-selective cytosolic 5'-nucleotidase designated cN-I has been implicated in adenosine formation during ATP breakdown. The molecular identity of cN-I is unknown, although an IMP/GMP-selective cytosolic 5'-nucleotidase (cN-II) and an ecto-5'-nucleotidase (e-N) have been cloned. We utilized the high abundance of cN-I in pigeon heart to purify a 40-kDa subunit for partial protein sequencing and subsequent cDNA cloning. We obtained a full-length clone encoding a novel 40-kDa peptide, unrelated to cN-II or e-N, that was most abundant in heart, brain, and breast muscle. Immunolocalization in heart showed a striated cytoplasmic location, suggesting association with contractile elements. Transient expression in COS-7 cells, generated a 5'-nucleotidase that catalyzed adenosine formation from AMP, which was increased during ATP catabolism. In conclusion, the cloning and expression of cN-I provides definitive evidence of its ability to produce adenosine during ATP breakdown.  相似文献   

3.
Catabolism of AMP during ATP breakdown produces adenosine, which restores energy balance. Catabolism of IMP may be a key step regulating purine nucleotide pools. Two, cloned cytosolic 5'-nucleotidases (cN-I and cN-II) have been implicated in AMP and IMP breakdown. To evaluate their roles directly, we expressed recombinant pigeon cN-I or human cN-II at similar activities in COS-7 or H9c2 cells. During rapid (more than 90% in 10 min) or slower (30-40% in 10 min) ATP catabolism, cN-I-transfected COS-7 and H9c2 cells produced significantly more adenosine than cN-II-transfected cells, which were similar to control-transfected cells. Inosine and hypoxanthine concentrations increased only during slower ATP catabolism. In COS-7 cells, 5'-nucleotidase activity was not rate-limiting for inosine and hypoxanthine production, which was therefore unaffected by cN-II- and actually reduced by cN-I- overexpression. In H9c2 cells, in which 5'-nucleotidase activity was rate-limiting, only cN-II overexpression accelerated inosine and hypoxanthine formation. Guanosine formation from GMP was also increased by cN-II. Our results imply distinct roles for cN-I and cN-II. Under the conditions tested in these cells, only cN-I plays a significant role in AMP breakdown to adenosine, whereas only cN-II breaks down IMP to inosine and GMP to guanosine.  相似文献   

4.
Nucleoside analogs are important in the treatment of hematologic malignancies, solid tumors, and viral infections. Their metabolism to the triphosphate form is central to their chemotherapeutic efficacy. Although the nucleoside kinases responsible for the phosphorylation of these compounds have been well described, the nucleotidases that may mediate drug resistance through dephosphorylation remain obscure. We have cloned and characterized a novel human cytosolic 5'-nucleotidase (cN-I) that potentially may have an important role in nucleoside analog metabolism. It is expressed at a high level in skeletal and heart muscle, at an intermediate level in pancreas and brain, and at a low level in kidney, testis, and uterus. The recombinant cN-I showed high affinity toward dCMP and lower affinity toward AMP and IMP. ADP was necessary for maximal catalytic activity. Expression of cN-I in Jurkat and HEK 293 cells conferred resistance to 2-chloro-2'-deoxyadenosine, with a 49-fold increase in the IC(50) in HEK 293 and a greater than 400-fold increase in the IC(50) in Jurkat cells. Expression of cN-I also conferred a 22-fold increase in the IC(50) to 2',3'-difluorodeoxycytidine in HEK 293 cells and an 82-fold increase in the IC(50) to 2',3'-dideoxycytidine in Jurkat cells. These data indicate that cN-I may play an important role in the regulation of physiological pyrimidine nucleotide pools and may also alter the therapeutic efficacy of certain nucleoside analogs.  相似文献   

5.
The kinetic properties of highly purified human placental cytoplasmic 5'-nucleotidase were investigated. Initial velocity studies gave Michaelis constants for AMP, IMP, and CMP of 18, 30, and 2.2 microM, respectively. The enzyme shows the following relative Vmax values: CMP greater than UMP greater than dUMP greater than GMP greater than AMP greater than dCMP greater than IMP. The activity was magnesium-dependent, and this cation binds sequentially with a Km of 14 microM for AMP and an apparent Km of 6 mM for magnesium. A large variety of purine, pyrimidine, and pyridine compounds exert an inhibitory effect on enzyme activity. IMP, GMP, and NADH produce almost 100% inhibition at 1.0 mM. Nucleoside di- and triphosphates are potent inhibitors. ATP and ADP are competitive inhibitors with respect to AMP and IMP as substrates with Ki values of 100 and 15 microM, respectively. Inorganic phosphate is a noncompetitive inhibitor with Ki values of 19 and 43 mM. Nucleosides and other compounds studied produce only a modest decrease of enzyme activity at 1 mM. Our findings suggest that the enzyme is regulated under physiological conditions by the concentrations of magnesium, nucleoside 5'-monophosphates, and nucleoside di- and triphosphates. The nucleotide pool concentration regulates the enzyme possibly by a mechanism of heterogeneous metabolic pool inhibition. These properties of human placental cytoplasmic 5'-nucleotidase may be related to the control of nucleotide degradation in vivo.  相似文献   

6.
The 5'-nucleotidase localized in rat liver plasma membranes was purified to a single protein, which contained phospholipid. The molecular weight and the sedimentation constant were about 150 000 and 7 S in the presence of sodium deoxycholate, while the enzyme protein was aggregated when the preparation was dialyzed thoroughly. The purified 5'-nucleotidase exhibited the same properties as the 5'-nucleotidase in plasma membranes. The 5'-nucleotidase activity was increased by the addition of various bile salts or by the solubilization of membranes with trypsin, papain or phospholipase C. The solubilized and aggregated forms of the enzyme showed different substrate specificity for nucleotides, pH optimum, heat stability and Km. The purified enzyme catalyzed an exchange reaction between AMP and adenosine, which was diminished by the addition of sodium deoxycholate.  相似文献   

7.
A nucleotide phosphomonoesterase activity that preferably hydrolyzed dCMP was detected in rabbit liver and purified approximately 20-fold. The enzyme was similar in the catalytic and molecular properties to pyrimidine 5'-nucleotidase subclass I (P5N-I), which distributed specifically in vertebrate erythrocytes. In addition to liver, the activity was found in rabbit kidney, spleen, heart, intestine, but was not detected in any rat or chicken tissues tested. The rabbit enzyme protein reacted with antibodies against chicken P5N-I. Its pI was estimated to be approximately 5.3, and the enzyme was concluded to consist of single polypeptide of an approximately 38 kDa based on gel filtration and Western blot analysis. The partially purified enzyme preferentially hydrolyzes dCMP, UMP and CMP, K(m) values for these substrates are approximately 0.3 mM, the optimal pH is approximately 7, and the enzyme requires Mg(2+). This nucleotidase may contribute to the regulation of intracellular pyrimidine nucleotides in the rabbit.  相似文献   

8.
An enzyme with FAD pyrophosphatase activity was extracted from human placental syncytiotrophoblast microvilli and purified to near-homogeneity. The enzyme has been identified as 5'-nucleotidase by several criteria. Throughout purification, parallel increases in the specific activities of FAD pyrophosphatase and AMP phosphatase were observed. The enzyme was a glycoprotein with a subunit molecular weight of 74,000. EDTA treatment resulted in a marked decline in both activities, and restoration of FAD pyrophosphatase activity but not 5'-nucleotidase activity was accomplished by the addition of Co2+ or, to a lesser extent, Mn2+. The substrate specificity of the 5'-nucleotidase activity that we observed agreed closely with the results of others. The pyrophosphatase activity was relatively specific for FAD. ADP, ATP, NAD(H), and FMN were not hydrolyzed, and ADP strongly inhibited both activities. For FAD pyrophosphatase activity, a Km of 1.2 x 10(-5) M and a Vmax of 1.1 mumol/min/mg protein were determined in assays performed in the presence of Co2+. In the absence of added Co2+, the Vmax declined but the Km was unchanged. For 5'-nucleotidase (AMP as substrate) the Km was 4.1 x 10(-5) M and the Vmax 109 mumol/min/mg protein. Hydrolysis of FMN to riboflavin was observed in partially purified detergent extracts of microvilli that contained alkaline phosphatase activity and lacked FAD pyrophosphatase and 5'-nucleotidase activity. The presence of both FAD pyrophosphatase and FMN phosphatase activities in syncytiotrophoblast microvilli supports the view that the placental uptake of vitamin B2 involves the hydrolysis of FAD and FMN to riboflavin which is then absorbed, a sequence postulated for intestinal absorption and liver uptake.  相似文献   

9.
5'-Nucleotidase of a human pancreatic tumor cell line (PaTu II) has been purified to homogeneity after extraction with detergent followed by two affinity chromatographic steps. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified 5'-nucleotidase revealed a single polypeptide band of 67 kDa. The Western blotted enzyme can be overlaid with concanavalin A proving its glycoprotein nature. After treatment with endoglycosidase F the deglycosylated 5'-nucleotidase exhibits an apparent molecular mass of 58 kDa. The kinetic properties of the solubilized enzyme have been determined (Km (AMP) of 4.0 microM; Vmax (AMP) = 8.6 muMOL/min.mg). Adenosine 5'-[alpha,beta-methylene]diphosphate is a competitive inhibitor of 5'-nucleotidase, whereas concanavalin A inhibits the enzymatic activity in a non-competitive manner. Polyclonal antibodies against purified 5'-nucleotidase of PaTu II have been produced which inhibit its enzymatic activity. Polyclonal antibodies raised against the enzyme purified from rat liver or bull seminal plasma also recognize 5'-nucleotidase of PaTu II cells, whereas polyclonal and monoclonal antibodies against the enzyme derived from chicken gizzard show no cross-reactivity. 5'-Nucleotidase appears to be concentrated in the plasma membrane of PaTu II cells as judged by cell fractionation and indirect immunofluorescence studies.  相似文献   

10.
5'-Nucleotidase from chicken gizzard smooth muscle was purified to homogeneity and used as immunogen for generating monoclonal antibodies. From about 150 positive clones nine IgG producing hybridoma cell lines have been selected for further characterization and antibody preparation. The resulting antibodies bind 5'-nucleotidase from chicken smooth muscle, chicken skeletal muscle, and chicken heart muscle but not the enzyme from chicken liver or rat liver. It could clearly be demonstrated that the nine antibodies recognize different antigenic determinants. Four of these antibodies are strong inhibitors of the AMPase activity of 5'-nucleotidase. One antibody is a weak inhibitor and four other antibodies have no effect on its enzymic activity. One of the monoclonal antibodies was used for immunoaffinity purification of 5'-nucleotidase from chicken heart muscle and chicken skeletal muscle. Pure and active enzymes could be isolated from detergent extracts in one step with a 10 to 20-fold higher yield compared to classical purification procedures. The subcellular distribution of 5'-nucleotidase in chicken gizzard was investigated using indirect immunofluorescence. We found a staining of the plasma membrane of smooth muscle cells and endothelial cells by all of the nine antibodies with variations in the staining intensity.  相似文献   

11.
The ecto-enzyme 5'-nucleotidase isolated from chicken gizzard has previously been shown to be a potent ligand of two glycoproteins of the extracellular matrix, namely fibronectin and laminin. Using immunofluorescent labeling techniques we observed that 5'-nucleotidase codistributed with laminin during the development of chicken striated muscle. In contrast, ecto-5'-nucleotidase was only faintly detectable on cells surrounded by a matrix expressing high levels of fibronectin. This distribution pattern distinguished 5'-nucleotidase from the pluripotent extracellular matrix receptors, chicken beta 1-integrins, which are expressed equally well in muscle and connective tissue. In addition, the specific activity of striated muscle ecto-5'-nucleotidase was stable during development and increased markedly posthatching. At each age considered, this specific activity corresponded to an 80-kDa enzyme which was inhibited by alpha,beta-methyleneadenosine diphosphate or by a monoclonal antibody directed against the smooth muscle isoform of the enzyme. Previous in vitro studies have revealed that 5'-nucleotidase is involved in the spreading of various mesenchyme-derived cells, such as chicken embryonic fibroblasts and myoblasts, on a laminin substrate. A prerequisite to examining a potential in vivo role for 5'-nucleotidase as an extracellular matrix ligand was to study its distribution. In adult muscle, 5'-nucleotidase displayed a more restricted distribution than in embryo. Results show that, in vivo, 5'-nucleotidase is revealed by immunofluorescent labeling using poly- and monoclonal antibodies to chicken gizzard 5'-nucleotidase in two structures, the costameres and myotendinous junctions, which are closely related to the focal adhesion sites observed in cell culture.  相似文献   

12.
Protein kinase was isolated from pigeon breast muscle. The preparation obtained was chromatographically homogeneous. The apparent Km varlue for histone H1 and ATP were 3,5-10(-5) M and 1,6-10(-5) M respectively. The purified enzyme displays high specificity for the lysine-rich histones (H1, H2b, H2a). The protein kinase activity is stimulated, 1,6-fold by cyclic AMP.  相似文献   

13.
An alkaline 5'-nucleotidase with properties similar to those of membrane-bound 5'-nucleotidase was recovered in soluble form in the postmicrosomal supernatant fraction (cytosol) of rat liver. The enzyme seems to constitute a quantitatively distinct fraction, since the activity in postmicrosomal supernatants was increased by a further 10% by additional homogenization of livers. Lysosomal acid phosphatase activity increased similarly, whereas other membrane-bound marker enzymes alkaline phosphatase, phosphodiesterase I and glucose-6-phosphatase showed no increase when homogenization of liver tissue was continued. Gel-permeation chromatography and pH-dependence studies indicated that enzyme activity in the supernatant fraction with 0.3 mM-UMP or -AMP as substrate at pH 8.1 was about 85 or 100% specific respectively. In regenerating liver the enzyme recovered in soluble form showed decreased specific activity, in contrast with alkaline phosphatase measured for comparison. The nucleotidase activity per mg of cytosolic protein was 2.1 nmol/min with AMP as substrate. The total activity measured in the postmicrosomal supernatant was 1.5% of the homogenate activity measured in the presence of detergent.  相似文献   

14.
5'-Nucleotidase from chicken gizzard smooth muscle has been extracted, using a sulfobetaine derivate of cholic acid, and purified to homogeneity by employing three chromatographic steps. It is shown that the purification scheme can be applied to 5'-nucleotidase from other sources, such as rat liver. On sodium dodecyl sulfate polyacrylamide gels, stained with silver nitrate, the purified enzyme from chicken gizzard shows a single polypeptide band with an apparent molecular mass of 79 kDa. The enzyme purified from rat liver exhibits a molecular mass of 73 kDa in agreement with published data [Bailyes, E.M., Soos, M., Jackson, P., Newby, A. C., Siddle, K. & Luzio, J.P. (1984) Biochem. J. 221, 369-377). Gel filtration, using non-denaturating detergent solutions, indicates that the native enzyme may exist as a homodimer (152 kDa) or homotetramer (310 kDa). Antibodies raised against the enzyme purified from chicken gizzard bind only 5'-nucleotidase, solubilized from chicken muscular sources, when immobilized, but not from chicken or rat liver. The existence of tissue specific variants of 5'-nucleotidase is therefore postulated and it appears that these particular isoforms can also be classified in membranous and secretory forms of 5'-nucleotidase. They also differ in their mode of interaction with actin. The AMPase activity of the membranous (= muscular) isoform is inhibited to a considerably higher percentage by F-actin than the enzyme isolated from rat liver.  相似文献   

15.
Ecto-5'-nucleotidase is regarded as being the key enzyme in the formation of the neuromodulator adenosine from released ATP. However, the association of ecto-5'-nucleotidase with nerve terminals is not consensual. Only enzyme histochemical and biochemical studies, but not immunocytochemical studies, agree on a general synaptic location of the enzyme. To clarify this issue further we tested the effect of an antibody against ecto-5'-nucleotidase, previously used in immunocytochemical studies, on the activity of ecto-5'-nucleotidase in fractions of nerve terminals isolated from different areas of rat hippocampus. The specific activity of extracellular AMP catabolism was higher in synaptosomes from the CA3 area (0.81+/-0.06 nmol/min/mg of protein) than from synaptosomes from the CA1 area or the dentate gyrus or from the whole hippocampus (0.49-0.68 nmol/ min/mg of protein). The catabolism of AMP (10 microM) was equally inhibited (85-92%) in synaptosomes from whole hippocampus, CA1, CA3, or dentate gyrus by alpha,beta-methylene-ADP (100 microM) and equally unaffected by p-nitrophenyl phosphate (0.5 mM) or rabbit IgGs (100 microg/ml). However, the antiserum against ecto-5'-nucleotidase (100 microg/ml) inhibited extracellular AMP catabolism by 44% in CA3 synaptosomes but had little or no effect in synaptosomes from CA1, dentate gyrus, or whole hippocampus. A similar difference in the inhibitory potential of the antibody was observed between fractions of isolated 5'-nucleotidase binding to concanavalin A-Sepharose (70%) and fractions not retained by the lectin column (18%). Taken together, these results suggest that immunological isoforms of ecto-5'-nucleotidase exist in the rat hippocampal nerve terminals, with predominance in the CA3 area.  相似文献   

16.
A soluble 5'-nucleotidase was purified 200-fold from pigeon heart. The enzyme (1) had an apparent molecular mass close to 150 kDa, (2) had a neutral pH optimum and hydrolysed a wide range of nucleoside 5'-monophosphates with a 15-fold preference for AMP over IMP, (3) at near-physiological concentrations of AMP was activated by ADP but not by ATP, (4) was inhibited by high Mg2+ concentration and high ionic strength, (5) was weakly inhibited by p-nitrophenol phosphate and Pi, and (6) was non-competitively inhibited more potently by 5'-deoxy-5'-isobutylthioinosine than by 5'-deoxy-5'-isobutylthioadenosine, but not by [alpha,beta-methylene]ADP. The data show that the enzyme is distinct from the ecto-5'-nucleotidase and from the previously purified IMP-specific 5'-nucleotidase. They also predict that the enzyme is activated during ATP catabolism and hence will generate a more-than-linear increase in the adenosine-formation rate in response to an increase in cytosolic AMP concentration.  相似文献   

17.
A 5'-nucleotidase was purified from chicken heart. Kinetic properties of the enzyme were similar to the cytosol 5'-nucleotidase previously reported for chicken liver and rat liver. This strongly suggests the existence of the same type of the cytosol 5'-nucleotidase in cardiac tissue that has been reported for hepatic tissue of various animals.  相似文献   

18.
1. A phosphohydrolase specific for 5'-nucleotides was characterized by using a particulate fraction from isolated fat-cells. 2. The activity of intact cells towards 5'-AMP was studied. 3. The activity in either situation had the same KM for AMP (45 muM) and was inhibited by low concentrations of ATP (less than 50 muM), but less potently by the ATP analogues AMP-P(CH2)P(adenylyl (beta gamma-methylene)diphosphonate) and AMP-P)NH)P (adenylylimidodiphosphate). 4. Homogenization of intact fat-cells caused no increase in activity and at least 85% of the activity was recovered in the particulate preparation. 5. The preparation of fat-cells used in this work was not freely permeable to AMP. 6. The ability of intact fat-cells to hydrolyse AMP implies that 5'-nucleotidase is an ectoenzyme in fat-cells. 7. Concentrations of ATP 100 times lower than intracellular concentrations inhibit the enzyme when added extracellularly to intact fat-cells, implying that this effect is also medicated at the extracellular face of the membrane. 8. Antibodies raised to whole liver cells and whole fat-cells inhibit 5'-nucleotidase in intact cells. 9. Incubation of intact fat-cells with adrenaline (1 mug/ml) or insulin (50 mui.u./ml) failed to alter the KM or Vmax. of the enzyme.  相似文献   

19.
Glycogen phosphorylase from swine adipose tissue was purified nearly 700-fold using ethanol precipitation, DEAE-cellulose adsorption, AMP-agarose affinity chromatography, and agarose gel filtration. The purified enzyme migrated as one major and several minor components during polyacrylamide gel electrophoresis. Activity was associated with the major component and at least one of the minor components. The molecular weight of the disaggregated, reduced, and alkylated enzyme, estimated by polyacrylamide gel electrophoresis performed in the presence of sodium dodecyl sulfate, was 90,000. Stability of the purified enzyme was considerably increased in the presence of AMP. The isoelectric pH of the enzyme in crude homogenates was 6.3. The sedimentation coefficient of the purified enzyme (7.9 S) and that in crude homogenates (7.3 S) was determined by sucrose density gradient sedimentation. Optimal pH for activity was between pH 6.5 and 7.1. Apparent Km values for glycogen and inorganic phosphate were 0.9 mg/ml and 6.6 mM, respectively. The Ka for AMP was 0.21 mM. Enzyme activity was increased by K2SO4, KF, KCl, and MgCl2 and decreased by NaCl, Na2SO4, D-glucose, and ATP. Inhibition by glucose was noncompetitive with the activator AMP; inhibition by ATP was partially competitive with AMP. The purified enzyme was activated by incubation with skeletal muscle phosphorylase kinase. Enzyme in crude homogenates was activated by the addition of MgCl2 and ATP; activation was not blocked by addition of protein kinase inhibitor, suggesting that phosphorylase kinase in homogenates of swine adipose tissue is present largely in an activated form. Deactivation of phosphorylase a by phosphorylase phosphatase was studied using enzyme purified approximately 200-fold from swine adipose tissue by ethanol precipitation, DEAE-cellulose chromatography, and gel filtration. The Km of the adipose tissue phosphatase for skeletal muscle phosphorylase a was 6 muM. The purified swine adipose tissue phosphorylase, labeled with 32-P, was inactivated and dephosphorylated by the adipose tissue phosphatase. Dephosphorylation of both skeletal muscle and adipose tissue substrates was inhibited by AMP and glucose reversed this inhibition. Several lines of evidence suggest that AMP inhibition was due to an action on the substrate rather than on the enzyme. We have previously reported that the system for phosphorylase activation in rat fat cells differs in some important characteristics from that in skeletal muscle. However, both swine fat phosphorylase and phosphorylase phosphatase have major properties very similar to those described for the enzymes from skeletal muscle.  相似文献   

20.
Using 1-4C-labeled AMP and IMP as substrates, 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) activity was detected at the external surface of frog skeletal muscle with the active site facing toward the extracellular space. The enzyme was firmly bound to the muscle membrane. Its activity was dependent on Ca2+ or Mg2+ and was inhibited by non-radioactive ribonucleoside 5'-monophosphates, or theophylline, while adenosine 3'-monophosphate and p-nitrophenylphosphate had little or no effect. 5'-Nucleotidase with similar properties was also found in the isolated plasma membrane fraction of the muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号