首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early growth response gene (Egr-1) is a stress response gene activated by various forms of stress and growth factor signaling. We report that supraphysiologic concentrations of O(2) (hyperoxia) induced Egr-1 mRNA and protein expression in cultured alveolar epithelial cells, as well as in mouse lung in vivo. The contribution of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK), p38 MAPK and PI3-kinase pathways to the activation of Egr-1 in response to hyperoxia was examined. Exposure to hyperoxia resulted in a rapid phosphorylation of ERK 1/2 kinases in mouse alveolar epithelial cells LA4. MEK inhibitor PD98059, but not inhibitors of p38 MAPK or PI3-kinase pathway, prevented Egr-1 induction by hyperoxia. The signaling cascade preceding Egr-1 activation was traced to epidermal growth factor receptor (EGFR) signaling. Hyperoxia is used as supplemental therapy in some diseases and typically results in elevated levels of reactive oxygen intermediates (ROI) in many lung cell types, the organ that receives highest O(2) exposure. Our results support a pathway for the hyperoxia response that involves EGF receptor, MEK/ERK pathway, and other unknown signaling components leading to Egr-1 induction. This forms a foundation for analysis of detailed mechanisms underlying Egr-1 activation during hyperoxia and understanding its consequences for regulating cell response to oxygen toxicity.  相似文献   

2.
Macrophages are activated during an inflammatory response and produce multiple inflammatory cytokines. IL-18 is one of the most important innate cytokines produced from macrophages in the early stages of the inflammatory immune response. Monocyte chemoattractant protein (MCP-1) is expressed in many inflammatory diseases such as multiple sclerosis and rheumatoid arthritis, and its expression is correlated with the severity of the disease. Both IL-18 and MCP-1 have been shown to be involved in inflammatory immune responses. However, it has been unclear whether IL-18 is involved in the induction of MCP-1. This investigation was initiated to determine whether IL-18 can induce MCP-1 production, and if so, by which signal transduction pathways. We found that IL-18 induced the production of MCP-1 in macrophages, which was IL-12-independent and was not mediated by autocrine cytokines such as IFN-gamma or TNF-alpha. We then examined signal transduction pathways involved in IL-18-induced MCP-1 production. We found that IL-18 did not activate the IkappaB kinase/NF-kappaB pathway, evidenced by no degradation of IkappaBalpha and no translocation of NF-kappaB p65 to the nucleus in IL-18-stimulated macrophages. Instead, IL-18 activated the PI3K/Akt and MEK/ERK1/2 pathways. Inhibition of either of these pathways attenuated MCP-1 production in macrophages, and inhibition of both signaling pathways resulted in the complete inhibition of MCP-1 production. On the basis of these observations, we conclude that IL-18 induces MCP-1 production through the PI3K/Akt and MEK/ERK1/2 pathways in macrophages.  相似文献   

3.
4.
5.
6.
Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure.  相似文献   

7.
The involvement of MAPK pathways in differentiation, proliferation and survival was investigated by comparing Epo and GM-CSF signalling in human factor-dependent myeloerythroid TF-1 cells with abnormal Epo-R. GM-CSF withdrawal induced cell-cycle arrest and apoptosis accompanied by increased caspase-3 activity, DNA degradation and reduced expression of the antiapoptotic Bcl-2 and Bcl-xl proteins. Readministration of GM-CSF but not Epo reversed these processes and induced proliferation. The GM-CSF promoted cell survival and proliferation correlated with MEK-1 dependent ERK1/2, Elk-1 and CREB phosphorylation and Egr-1, c-Fos expression as well as with increased STAT-5, AP-1, c-Myb and NF-kappaB DNA-binding. In contrast, Epo failed to activate the Raf-1/ERK1/2 MAPK pathway or to induce Egr-1 and/or c-Fos expression, while it induced erythroid differentiation in GM-CSF-deprived cells. In addition, the Epo-induced haemoglobin production was inhibited in the presence of GM-CSF. These results demonstrate that the activation of MAPK cascade is not necessary for Epo-induced haemoglobin production in TF-1 cells and suggest a negative cross-talk between the signalling of GM-CSF-stimulated cell proliferation and Epo-induced erythroid differentiation.  相似文献   

8.
AIDS-associated Kaposi's sarcoma (KS) is a cytokine-mediated tumor, at least in the early stages of this disease; however, there is at present no definitive consensus regarding the exact role of intracellular signaling pathways involved in growth of KS cells. We found that KS cell growth factors oncostatin M, sIL-6R/IL-6, TNFalpha, and IL-1beta all activate ERK1/2, and selective blockage of this kinase by PD98059 resulted in a profound inhibition of the cytokine-induced KS cell growth. Concurrently with activation of ERK1/2, these growth factors phosphorylated and activated p38MAPK. The selective inhibition of p38MAPK by SB203580 prominently enhanced the cytokine-induced proliferation of KS cells, thereby indicating that p38MAPK has a negative feedback on mitogenic signals. As these KS cell growth factors lead to simultaneous activation of ERK1/2 and p38MAPK signaling pathways, the concerted effects of these kinase activities may well determine the intensity of cellular proliferative responses to these growth factors.  相似文献   

9.
Verotoxin (VT)-producing Escherichia coli (E. coli) O157:H7 infections are frequently complicated by thrombotic angiopathy, hemolytic uremic syndrome (HUS) and neurological symptoms. The present data demonstrate that VT-1 (Shiga toxin) stimulation of macrophage-like THP-1 cells up-regulates the activity, antigen and mRNA levels of tissue factor (TF), a key cofactor of the coagulation-inflammation-thrombosis circuit. This up-regulation is accompanied by phosphorylation of phosphatidylinositol 3-kinase (PI3-kinase), IkappaB kinase beta (IKKbeta) and extracellular signal-regulated kinase 2 (ERK2). Changes in TF mRNA levels were in parallel with the activation of NF-kappaB/Rel and Egr-1 activation, but not with AP-1. Inhibition of PI3-kinase attenuated VT-1-induced phosphorylation of IKKbeta and ERK2, and the up-regulation of TF mRNA levels. VT-1 stimulation rapidly activated c-Yes tyrosine kinase, a member of the Src family. Treatment of the cells with c-Yes antisense oligos attenuated the VT-1-induced phosphorylation of PI3-kinase, IKKbeta and ERK2, activations of NF-kappaB/Rel and Egr-1, and up-regulation of TF mRNA levels. These results suggest that VT-1-induced macrophage stimulation activates c-Yes, which then up-regulates TF expression through activation of the IKKbeta/proteasome/NF-kappaB/Rel and MEK/ERK2/Egr-1 pathways via activation of PI3-kinase. Induction of macrophage TF expression by VT-1 may play an important role in the acceleration of the coagulation-inflammation-thrombosis circuit during infections by VT-producing E. coli.  相似文献   

10.
11.
12.
Acute endotoxemia is associated with prolonged survival of adherent neutrophils in the lung vasculature. In the present studies, the effects of inflammatory mediators on signaling pathways regulating neutrophil survival were examined. We found that the protein kinase C activator, 12-O-tetradecanoyl-phorbol 13-acetate (TPA), but not interferon-gamma (IFN-gamma), prolonged the survival of adherent vasculature lung neutrophils from endotoxemic rats, a response that was correlated with reduced apoptosis. Although endotoxin administration to rats induced the expression of the anti-apoptotic protein Mcl-1 in lung neutrophils, TPA had no effect on this response. Endotoxin administration also induced expression of total p38 and p44/42 mitogen activated protein kinases (MAPK) in neutrophils, as well as phosphatidyl inositol 3 kinase (PI3K) and its downstream target protein kinase B (PKB). Treatment of the cells with TPA increased p38 MAPK expression in cells from both control and endotoxin treated animals. Cells from endotoxin treated, but not control animals, were found to exhibit constitutive binding activity of nuclear factor kappa B (NF-kappaB) which was blocked by TPA. In contrast, constitutive CCAAT/enhancer binding protein (C/EBP) nuclear binding activity evident in neutrophils from control animals was reduced following endotoxin administration. Moreover, this response was independent of TPA. These data suggest that NF-kappaB plays a role in TPA-induced signaling leading to prolonged survival of adherent vascular neutrophils in the lung during acute endotoxemia.  相似文献   

13.
We investigated the molecular mechanism of the synergism between interferon gamma (IFNgamma) and tumor necrosis factor alpha (TNFalpha) documented in a variety of biological occasions such as tumor cell death and inflammatory responses. IFNgamma/TNFalpha synergistically induced apoptosis of ME-180 cervical cancer cells. IFNgamma induced STAT1 phosphorylation and interferon regulatory factor 1 (IRF-1) expression. Transfection of phosphorylation-defective STAT1 inhibited IFNgamma/TNFalpha-induced apoptosis, whereas IRF-1 transfection induced susceptibility to TNFalpha. Dominant-negative IkappaBalpha transfection sensitized ME-180 cells to TNFalpha. IFNgamma pretreatment attenuated TNFalpha- or p65-induced NF-kappaB reporter activity, whereas it did not inhibit p65 translocation or DNA binding of NF-kappaB. IRF-1 transfection alone inhibited TNFalpha-induced NF-kappaB activity, which was reversed by coactivator p300 overexpression. Caspases were activated by IFNgamma/TNFalpha combination; however, caspase inhibition did not abrogate IFNgamma/TNFalpha-induced cell death. Instead, caspase inhibitors directed IFNgamma/TNFalpha-treated ME-180 cells to undergo necrosis, as demonstrated by Hoechst 33258/propidium iodide staining and electron microscopy. Taken together, our results indicate that IFNgamma and TNFalpha synergistically act to destroy ME-180 tumor cells by either apoptosis or necrosis, depending on caspase activation, and STAT1/IRF-1 pathways initiated by IFNgamma play a critical role in IFNgamma/TNFalpha synergism by inhibiting cytoprotective NF-kappaB. IFNgamma/TNFalpha synergism appears to activate cell death machinery independently of caspase activation, and caspase activation seems to merely determine the mode of cell death.  相似文献   

14.
Enteropathogenic Escherichia coli (EPEC) alters many functions of the host intestinal epithelia. Inflammation is initiated by activation of nuclear factor (NF)-kappaB, and paracellular permeability is enhanced via a Ca2+- and myosin light-chain kinase (MLCK)-dependent pathway. The aims of this study were to identify signaling pathways by which EPEC triggers inflammation and to determine whether these pathways parallel or diverge from those that alter permeability. EPEC-induced phosphorylation and degradation of the primary inhibitor of NF-kappaB (IkappaBalpha) were tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta independent. In contrast to Salmonella typhimurium, EPEC-stimulated IkappaBalpha degradation and IL-8 expression did not require Ca2+. Instead, extracellular signal-regulated kinase (ERK)-1/2 was significantly and rapidly activated. ERK1/2 inhibitors attenuated IkappaBalpha degradation and IL-8 expression. Although ERK1/2 can activate MLCK, its inhibition had no impact on EPEC disruption of the tight junction barrier. In conclusion, EPEC-induced inflammation 1) is TNF-alpha and IL-1beta receptor independent, 2) utilizes pathways differently from S. typhimurium, 3) requires ERK1/2, and 4) employs signals that are distinct from those that alter permeability. This is the first time that EPEC-activated signaling cascades have been linked to independent functional consequences.  相似文献   

15.
16.
17.
To examine the role of mitogen-activated protein kinase and nuclear factor kappa B (NF-kappaB) pathways on osteoclast survival and activation, we constructed adenovirus vectors carrying various mutants of signaling molecules: dominant negative Ras (Ras(DN)), constitutively active MEK1 (MEK(CA)), dominant negative IkappaB kinase 2 (IKK(DN)), and constitutively active IKK2 (IKK(CA)). Inhibiting ERK activity by Ras(DN) overexpression rapidly induced the apoptosis of osteoclast-like cells (OCLs) formed in vitro, whereas ERK activation after the introduction of MEK(CA) remarkably lengthened their survival by preventing spontaneous apoptosis. Neither inhibition nor activation of ERK affected the bone-resorbing activity of OCLs. Inhibition of NF-kappaB pathway with IKK(DN) virus suppressed the pit-forming activity of OCLs and NF-kappaB activation by IKK(CA) expression upregulated it without affecting their survival. Interleukin 1alpha (IL-1alpha) strongly induced ERK activation as well as NF-kappaB activation. Ras(DN) virus partially inhibited ERK activation, and OCL survival promoted by IL-1alpha. Inhibiting NF-kappaB activation by IKK(DN) virus significantly suppressed the pit-forming activity enhanced by IL-1alpha. These results indicate that ERK and NF-kappaB regulate different aspects of osteoclast activation: ERK is responsible for osteoclast survival, whereas NF-kappaB regulates osteoclast activation for bone resorption.  相似文献   

18.
In human neutrophils, the neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) acting via the G protein-coupled receptors vasoactive intestinal peptide/PACAP receptor 1 (VPAC-1) and formyl peptide receptor-like 1 (FPRL1) modulates Ca2+ and pro-inflammatory activities. We evaluated in human monocytes the importance of the Ca2+ signal and the participation of FPRL1 in PACAP-associated signaling pathways and pro-inflammatory activities. PACAP-evoked Ca2+ transient involved both Ca2+ influx and intracytoplasmic Ca2+ mobilisation. This was pertussis toxin, protein kinase A and adenylate cyclase dependent indicating the participation of Galphai and Galphas with mobilisation of both InsP3 sensitive and insensitive stores. Intra- or extracellular Ca2+ depletion resulted in the inhibition of PACAP-induced, Akt, ERK, p38 and NF-kappaB activations as well as a decrease in PACAP-associated reactive oxygen species (ROS) production and integrin CD11b membrane upregulation. The FPRL1 antagonist, Trp-Arg-Trp-Trp-Trp (WRW4), decreased PACAP-evoked Ca2+ signal, Akt, ERK phosphorylation, ROS and CD11b upregulation without affecting p38 phosphorylation. NF-kappaB inhibitors prevented PACAP-induced Ca2+ mobilisation. Monocytes pre-treatment with fMLP but not with LPS desensitised cells to the pro-inflammatory effects of PACAP. Thus, both intra- and extracellular Ca2+ play a role in controlling pro-inflammatory functions stimulated by PACAP which acts through a VPAC-1, FPRL1/Galphai/PI3K/ERK pathway and a VPAC-1/Galphas/PKA/p38 pathway to fully activate monocytes.  相似文献   

19.
Tumor necrosis factor alpha (TNFalpha) is a pro-inflammatory cytokine that controls the initiation and progression of inflammatory diseases such as rheumatoid arthritis. Tpl2 is a MAPKKK in the MAPK (i.e. ERK) pathway, and the Tpl2-MEK-ERK signaling pathway is activated by the pro-inflammatory mediators TNFalpha, interleukin (IL)-1beta, and bacterial endotoxin (lipopolysaccharide (LPS)). Moreover, Tpl2 is required for TNFalpha expression. Thus, pharmacologic inhibition of Tpl2 should be a valid approach to therapeutic intervention in the pathogenesis of rheumatoid arthritis and other inflammatory diseases in humans. We have developed a series of highly selective and potent Tpl2 inhibitors, and in the present study we have used these inhibitors to demonstrate that the catalytic activity of Tpl2 is required for the LPS-induced activation of MEK and ERK in primary human monocytes. These inhibitors selectively target Tpl2 in these cells, and they block LPS- and IL-1beta-induced TNFalpha production in both primary human monocytes and human blood. In rheumatoid arthritis fibroblast-like synoviocytes these inhibitors block ERK activation, cyclooxygenase-2 expression, and the production of IL-6, IL-8, and prostaglandin E(2), and the matrix metalloproteinases MMP-1 and MMP-3. Taken together, our results show that inhibition of Tpl2 in primary human cell types can decrease the production of TNFalpha and other pro-inflammatory mediators during inflammatory events, and they further support the notion that Tpl2 is an appropriate therapeutic target for rheumatoid arthritis and other human inflammatory diseases.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are toxic environmental contaminants known to enhance production of pro-inflammatory cytokines such as IL-1beta. The present study was designed in order to determine whether TNFalpha, another cytokine acting in inflammation, may also constitute a target for these chemicals. Both TNFalpha mRNA and TNFalpha secretion levels were found to be enhanced in human BP-treated macrophages. Dioxin, a contaminant activating the aryl hydrocarbon receptor (AhR) like PAHs, was also shown to increase TNFalpha expression. BP-mediated TNFalpha induction was however not suppressed by AhR antagonists, making unlikely the involvement of the typical AhR signalling pathway. BP-exposure of macrophages did not enhance NF-kappaB DNA binding activity, but it activated the MAP kinase ERK1/2. In addition, the use of chemical inhibitors of extracellular signal-regulated protein kinase (ERK) activation fully abrogated induction of TNFalpha production in BP-treated macrophages. These data likely indicate that PAHs enhance TNFalpha expression in human macrophages through an ERK-related mechanism. Such a regulation may contribute to confer pro-inflammatory properties to these widely-distributed environmental contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号