首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of the glycogen-targeting protein PTG promotes glycogen synthase activation and glycogen storage in various cell types. In this study, we tested the contribution of phosphorylase inactivation to the glycogenic action of PTG in hepatocytes by using a selective inhibitor of phosphorylase (CP-91149) that causes dephosphorylation of phosphorylase a and sequential activation of glycogen synthase. Similar to CP-91194, graded expression of PTG caused a concentration-dependent inactivation of phosphorylase and activation of glycogen synthase. The latter was partially counter-acted by the expression of muscle phosphorylase and was not additive with the activation by CP-91149, indicating that it is in part secondary to the inactivation of phosphorylase. PTG expression caused greater stimulation of glycogen synthesis and translocation of glycogen synthase than CP-91149, and the translocation of synthase could not be explained by accumulation of glycogen, supporting an additional role for glycogen synthase translocation in the glycogenic action of PTG. The effects of PTG expression on glycogen synthase and glycogen synthesis were additive with the effects of glucokinase expression, confirming the complementary roles of depletion of phosphorylase a (a negative modulator) and elevated glucose 6-phosphate (a positive modulator) in potentiating the activation of glycogen synthase. PTG expression mimicked the inactivation of phosphorylase caused by high glucose and counteracted the activation caused by glucagon. The latter suggests a possible additional role for PTG on phosphorylase kinase inactivation.  相似文献   

2.
The state of activation of glycogen synthase enhanced by glucose, other sugars and gluconeogenic precursors shows a strong positive correlation with the intracellular concentrations of glucose 6-P when ATP concentrations remain constant. The concentrations of glucose 6-P achieved upon incubation of hepatocytes with glucose plus mannoheptulose, an inhibitor of glucokinase and hexokinase, were lower than those found when the incubation was carried out with glucose alone. Under these conditions, in keeping with the decrease in glucose 6-P, the activation of glycogen synthase by glucose was also impaired. On the other hand the inactivation of glycogen phosphorylase was not altered in the presence of mannoheptulose.  相似文献   

3.
In rat hepatocytes, the basal glycogen synthase activation state is decreased in the fed and diabetic states, whereas glycogen phosphorylase a activity decreases only in diabetes. Diabetes practically abolishes the time- and dose-dependent activation of glycogen synthase to glucose especially in the fed state. Fructose, however, is still able to activate this enzyme. Glycogen phosphorylase response to both sugars is operative in all cases. Cell incubation with the combination of 20 mM glucose plus 3 mM fructose produces a great activation of glycogen synthase and a potentiated glycogen deposition in both normal and diabetic conditions. Using radiolabeled sugars, we demonstrate that this enhanced glycogen synthesis is achieved from both glucose and fructose even in the diabetic state. Therefore, the presence of fructose plays a permissive role in glycogen synthesis from glucose in diabetic animals. Glucose and fructose increase the intracellular concentration of glucose 6-phosphate and fructose reduces the concentration of ATP. There is a close correlation between the ratio of the intracellular concentrations of glucose 6-phosphate and ATP (G6-P/ATP) and the activation state of glycogen synthase in hepatocytes from both normal and diabetic animals. However, for any given value of the G6-P/ATP ratio, the activation state of glycogen synthase in diabetic animals is always lower than that of normal animals. This suggests that the system that activates glycogen synthase (synthase phosphatase activity) is impaired in the diabetic state. The permissive effect of fructose is probably exerted through its capacity to increase the G6-P/ATP ratio which may partially increase synthase phosphatase activity, rendering glycogen synthase active.  相似文献   

4.
Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6-P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3 alpha and -beta genes are replaced with mutant forms (GSK3 alpha/beta S21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3 alpha/beta S21A/S21A/S9A/S9A mice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6-P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6-P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.  相似文献   

5.
Hepatic insulin resistance in the leptin-receptor defective Zucker fa/fa rat is associated with impaired glycogen synthesis and increased activity of phosphorylase-a. We investigated the coupling between phosphorylase-a and glycogen synthesis in hepatocytes from fa/fa rats by modulating the concentration of phosphorylase-a. Treatment of hepatocytes from fa/fa rats and Fa/? controls with a selective phosphorylase inhibitor caused depletion of phosphorylase-a, activation of glycogen synthase and stimulation of glycogen synthesis. The flux-control coefficient of phosphorylase on glycogen synthesis was glucose dependent and at 10 mm glucose was higher in fa/fa than Fa/? hepatocytes. There was an inverse correlation between the activities of glycogen synthase and phosphorylase-a in both fa/fa and Fa/? hepatocytes. However, fa/fa hepatocytes had a higher activity of phosphorylase-a, for a corresponding activity of glycogen synthase. This defect was, in part, normalized by expression of the glycogen-targeting protein, PTG. Hepatocytes from fa/fa rats had normal expression of the glycogen-targeting proteins G(L) and PTG but markedly reduced expression of R6. Expression of R6 protein was increased in hepatocytes from Wistar rats after incubation with leptin and insulin. Diminished hepatic R6 expression in the leptin-receptor defective fa/fa rat may be a contributing factor to the elevated phosphorylase activity and/or its high control strength on glycogen synthesis.  相似文献   

6.
Summary Regulation of the dephosphorylation of glycogen synthase in extracts from rat heart has been studied by adding exogenous phosphatase to the extract. These experiments were possible only because the endogenous protein phosphatase activity of the extract could be inhibited by KF under conditions where alkaline phosphatase activity was not. The concentration of substrate (glycogen synthase from the heart extract) and catalyst (purified E. coli alkaline phosphatase) could be varied independently, by adding known amounts of alkaline phosphatase to the KF-containing heart extracts. Alkaline phosphatase could completely dephosphorylate glycogen synthase while phosphorylase was unchanged. The rate of dephosphorylation was proportional to both the concentration of alkaline phosphatase added to the tissue extract and the amount of glycogen synthase in the extract. The Km for glycogen synthase was close to the concentration found in heart tissue. The Km and the maximum rate of dephosphorylation were both dependent on the phosphorylation state of the glycogen synthase. Less phosphorylated enzyme forms were dephosphorylated faster. These results indicate the necessity for precise control of many variables in studying the rate of glycogen synthase dephosphorylation.Alkaline phosphatase-catalyzed dephosphorylation could be inhibited by physiological concentrations of glycogen. Glycogen synthase dephosphorylation in extracts from fasted-refed rats was less sensitive to glycogen inhibition than in extracts from normal animals. The phosphorylation state of the glycogen synthase in these animals was assessed by kinetic studies to show that differences in phosphorylation state probably could not account for the observations. Fasting led to a decreased rate of dephosphorylation of glycogen synthase due to both an apparent change in kinetic properties of glycogen synthase as a substrate for alkaline phosphatase, and an increased inhibitory effect of glycogen. Stable modifications of glycogen synthase caused by altered nutritional states in the animals are thought to produce these effects.%GSI represents the percentage of glycogen synthase activity that is active without glucose 6-P.  相似文献   

7.
Multiple signalling pathways are involved in the mechanism by which insulin stimulates hepatic glycogen synthesis. In this study we used selective inhibitors of glycogen synthase kinase-3 (GSK-3) and an allosteric inhibitor of phosphorylase (CP-91149) that causes dephosphorylation of phosphorylase a, to determine the relative contributions of inactivation of GSK-3 and dephosphorylation of phosphorylase a as alternative pathways in the stimulation of glycogen synthesis by insulin in hepatocytes. GSK-3 inhibitors (SB-216763 and Li+) caused a greater activation of glycogen synthase than insulin (90% vs. 40%) but a smaller stimulation of glycogen synthesis (30% vs. 150%). The contribution of GSK-3 inactivation to insulin stimulation of glycogen synthesis was estimated to be less than 20%. Dephosphorylation of phosphorylase a with CP-91149 caused activation of glycogen synthase and translocation of the protein from a soluble to a particulate fraction and mimicked the stimulation of glycogen synthesis by insulin. The stimulation of glycogen synthesis by phosphorylase inactivation cannot be explained by either inhibition of glycogen degradation or activation of glycogen synthase alone and suggests an additional role for translocation of synthase. Titrations with the phosphorylase inactivator showed that stimulation of glycogen synthesis by insulin can be largely accounted for by inactivation of phosphorylase over a wide range of activities of phosphorylase a. We conclude that a signalling pathway involving dephosphorylation of phosphorylase a leading to both activation and translocation of glycogen synthase is a critical component of the mechanism by which insulin stimulates hepatic glycogen synthesis. Selective inactivation of phosphorylase can mimic insulin stimulation of hepatic glycogen synthesis.  相似文献   

8.
Traditionally, glycogen synthase (GS) has been considered to catalyze the key step of glycogen synthesis and to exercise most of the control over this metabolic pathway. However, recent advances have shown that other factors must be considered. Moreover, the control of glycogen deposition does not follow identical mechanisms in muscle and liver. Glucose must be phosphorylated to promote activation of GS. Glucose-6-phosphate (Glc-6-P) binds to GS, causing the allosteric activation of the enzyme probably through a conformational rearrangement that simultaneously converts it into a better substrate for protein phosphatases, which can then lead to the covalent activation of GS. The potency of Glc-6-P for activation of liver GS is determined by its source, since Glc-6-P arising from the catalytic action of glucokinase (GK) is much more effective in mediating the activation of the enzyme than the same metabolite produced by hexokinase I (HK I). As a result, hepatic glycogen deposition from glucose is subject to a system of control in which the 'controller', GS, is in turn controlled by GK. In contrast, in skeletal muscle, the control of glycogen synthesis is shared between glucose transport and GS. The characteristics of the two pairs of isoenzymes, liver GS/GK and muscle GS/HK I, and the relationships that they establish are tailored to suit specific metabolic roles of the tissues in which they are expressed. The key enzymes in glycogen metabolism change their intracellular localization in response to glucose. The changes in the intracellular distribution of liver GS and GK triggered by glucose correlate with stimulation of glycogen synthesis. The translocation of GS, which constitutes an additional mechanism of control, causes the orderly deposition of hepatic glycogen and probably represents a functional advantage in the metabolism of the polysaccharide.  相似文献   

9.
The activation of glycogen synthase by insulin is in many instances stimulated by the presence of extracellular glucose. Previous observations in cell extracts, glycogen pellets and other crude systems suggest that this stimulation may be due to an increase in glucose 6-phosphate, which activates the dephosphorylation of glycogen synthase by protein phosphatases. Using purified rabbit muscle glycogen synthase D and protein phosphatases 1 and 2A, the types responsible for the activation of muscle synthase, it was found that glucose 6-phosphate, at low, physiological concentrations, stimulated the dephosphorylation of glycogen synthase. Both types of phosphatase were stimulated to the same extent when acting on glycogen synthase. The dephosphorylation of other protein substrates of the phosphatases was either not affected or inhibited by glucose 6-phosphate. It appears that the stimulatory effect of glucose 6-phosphate at physiological concentrations is apparently specific for glycogen synthase, and most likely due to an allosteric configuration change of this enzyme which facilitates its dephosphorylation. In addition, the effects of other reported modulators of glycogen synthase dephosphorylation, AMP, ATP and Mg2+, were studied in this 'in vitro' system.  相似文献   

10.
Activation of hepatocyte glycogen synthase by metabolic inhibitors   总被引:1,自引:0,他引:1  
Incubation of isolated rat hepatocytes with metabolic inhibitors causes an increase in the -glucose 6-P/+glucose 6-P activity ratio of glycogen synthase after decreasing ATP and increasing AMP levels. Concomitantly, the activity of phosphorylase is increased six-fold by the same treatment. This activation of both enzymes remains after gel filtration of the hepatocyte extracts. Addition of metabolic inhibitors to cells pretreated with an inhibitor of AMP-deaminase results in an accumulation of AMP and, simultaneously, in a further increase in the activation state of glycogen synthase. The correlation coefficient between the intracellular concentration of AMP and glycogen synthase activity is r = 0.93. It is proposed that the covalent activation of glycogen synthase by metabolic inhibitors can be triggered by changes in the level of the intracellular concentrations of adenine nucleotides.  相似文献   

11.
Culturing hepatocytes with a combination of LPS, TNF-α, IL-1β and IFN-γ resulted in an inhibition of glucose output from glycogen and prevented the repletion of glycogen in freshly cultured cells. The reduced glycogen mobilisation correlated with the lower cell glycogen content and reduced rate of glycogen synthesis from [U-14C]glucose rather than alterations in either total phosphorylase or phosphorylase a activity. There was no change in the percentage of glycogen exported as glucose nor the production of lactate plus pyruvate indicating that redistribution of the Gluc-6-P cannot explain the failure of the liver to export glucose. Although changes in glycogen mobilisation correlated with NO production, inhibition of NO synthase by inclusion of L-NMMA in the culture medium failed to prevent the inhibition of either glycogen accumulation or mobilisation by the proinflammatory cytokines, precluding the involvement of NO in this response. LPS plus cytokine treatment had no effect on total glycogen synthase activity although the activity ratio was lowered, indicative of increased phosphorylation. The inhibition of glycogen synthesis correlated with a fall in the intracellular concentrations of Gluc-6-P and UDP-glucose and in the absence of measured changes in kinase activity, it is suggested that the fall in Gluc-6-P reduces both substrate supply and glycogen synthase phosphatase activity. The fall in Gluc-6-P coincided with a reduction in total glucokinase and hexokinase activity within the cells, but no significant change in either the translocation of glucokinase or glucose-6-phosphatase activity. This demonstrates direct cytokine effects on glycogen metabolism independent of changes in glucoregulatory hormones.  相似文献   

12.
The role of increased glucose transport in the hormonal regulation of glycogen synthase by insulin was investigated in 3T3-L1 adipocytes. Insulin treatment stimulated glycogen synthase activity 4-5-fold in these cells. Cytosolic glycogen synthase levels decreased by 75% in response to insulin, whereas, conversely, the glycogenolytic agent isoproterenol increased cytosolic enzyme levels by 200%. Removal of extracellular glucose reduced glycogen synthase activation by 40% and completely blocked enzymatic translocation. Addition of 5 mM 2-deoxyglucose did not restore glycogen synthase translocation but did augment dephosphorylation of the protein by insulin. The translocation event could be reconstituted in vitro only by the addition of UDP-glucose to basal cell lysates. Amylase pretreatment of the extracts suppressed glycogen synthase translocation, indicating that the enzyme was binding to glycogen. Incubation of 3T3-L1 adipocytes with 10 mM glucosamine induced a state of insulin resistance, blocked the translocation of glycogen synthase, and inhibited insulin-stimulated glycogen synthesis by 50%. Surprisingly, glycogen synthase activation by insulin was enhanced 4-fold, in part due to allosteric activation by a glucosamine metabolite. In vitro, glucosamine 6-phosphate and glucose 6-phosphate stimulated glycogen synthase activity with similar concentration curves. These results indicate that glucose metabolites have an impact on the regulation of glycogen synthase activation and localization by insulin.  相似文献   

13.
Effect of fructose on glycogen synthesis in the perfused rat liver   总被引:1,自引:0,他引:1  
The effect of fructose on glycogen synthesis was examined in the perfused liver of starved rats. With increasing fructose concentration in the perfusate, glycogen synthesis and the % a form of glycogen synthase increased to a maximum at 2 mM and then decreased, progressively. The glucose 6-P level increased with the increase in fructose concentration. On the other hand, the ATP content was unchanged at a concentration of 2 mM or less and decreased at 3 mM or more. We also showed that the stimulation of glycogen synthesis by fructose at a concentration of 2 mM or less was due to activation of glycogen synthase by accumulated glucose 6-P and that ATP depletion at a concentration of 3 mM or more caused an increase in phosphorylase a and a decrease in glycogen synthase activity even in the presence of a high concentration of glucose 6-P.  相似文献   

14.
Hampson LJ  Agius L 《FEBS letters》2007,581(21):3955-3960
Parasympathetic (cholinergic) innervation is implicated in the stimulation of hepatic glucose uptake by portal vein hyperglycaemia. We determined the direct effects of acetylcholine on hepatocytes. Acute exposure to acetylcholine mimicked insulin action on inactivation of phosphorylase, stimulation of glycogen synthesis and suppression of phosphoenolpyruvate carboxykinase mRNA levels but with lower efficacy and without synergy. Pre-exposure to acetylcholine had a permissive effect on insulin action similar to glucocorticoids and associated with increased glucokinase activity. It is concluded that acetylcholine has a permissive effect on insulin action but cannot fully account for the rapid stimulation of glucose uptake by the portal signal.  相似文献   

15.
The short-term controls of glycogen synthase [EC 2.4.1.11] and glycogen phosphorylase [EC 2.4.1.1] by major regulators, such as insulin, glucose, catecholamine, and glucagon, were compared in a simple, yet organized experimental system, i.e., adult rat hepatocytes in primary culture. Glycogen synthase was activated by glucose markedly and dose-dependently (5-40 mM), but insulin alone (1 X 10(-8) M) activated this enzyme only two-fold. Therefore, activation of the enzyme by the two regulators together was mostly due to activation by glucose. Glucagon at a concentration of 5 X 10(-10) M suppressed this activation almost completely. Glucagon at this concentration activated phosphorylase considerably and this activation was slightly inhibited by insulin. Phenylephrine also activated phosphorylase, and this activation was inhibited by phenoxybenzamine or prazosin, suggesting that activation by catecholamine is through the alpha 1-adrenergic receptor. Similarly a high concentration of glucose diminished the effects of glucagon and phenylephrine. These results suggest that in rat liver, glycogen metabolism is controlled mainly by glucagon, catecholamine, and glucose; the former two activate phosphorylase and inactivate synthase, while glucose activates synthase strongly and inactivates phosphorylase partially. Insulin plays a minor role in both reactions. Thus, the liver is primarily an organ for glucose production, which is regulated by hormones, not for glycogen storage, which is increased only by a high glucose concentration in the portal blood.  相似文献   

16.
The activation (dephosphorylation) of glycogen synthase and the inactivation (dephosphorylation) of phosphorylase in rat liver extracts on the administration of fructose were examined. The lag in the conversion of synthase b into a was cancelled, owing to the accumulation of fructose 1-phosphate. A decrease in the rate of dephosphorylation of phosphorylase a was also observed. The latency re-appeared in gel-filtered liver extracts. Similar latency was demonstrated in extracts from glucagon-treated rats. Addition of fructose 1-phosphate to the extract was able to abolish the latency, and the activation of glycogen synthase and the inactivation of phosphorylase occurred simultaneously. Fructose 1-phosphate increased the activity of glycogen synthase b measured in the presence of 0.2-0.4 mM-glucose 6-phosphate. According to kinetic investigations, fructose 1-phosphate increased the affinity of synthase b for its substrate, UDP-glucose. The accumulation of fructose 1-phosphate resulted in glycogen synthesis in the liver by inducing the enzymic activity of glycogen synthase b in the presence of glucose 6-phosphate in vivo and by promoting the activation of glycogen synthase.  相似文献   

17.
Pharmacological activation or overexpression of glucokinase in hepatocytes stimulates glucose phosphorylation, glycolysis and glycogen synthesis. We used an inhibitor of glucose 6-phosphate (Glc6P) hydrolysis, namely the chlorogenic derivative, 1-[2-(4-chloro-phenyl)-cyclopropylmethoxy]-3, 4-dihydroxy-5-(3-imidazo[4,5-b]pyridin-1-yl-3-phenyl-acryloyloxy)-cyclohexanecarboxylic acid (also known as S4048), to determine the contribution of Glc6P concentration, as distinct from glucokinase protein or activity, to the control of glycolysis and glycogen synthesis by glucokinase overexpression. The validity of S4048 for testing the role of Glc6P was supported by its lack of effect on glucokinase binding and its nuclear/cytoplasmic distribution. The stimulation of glycolysis by glucokinase overexpression correlated strongly with glucose phosphorylation, whereas glycogen synthesis correlated strongly with Glc6P concentration. Metabolic control analysis was used to determine the sensitivity of glycogenic flux to glucokinase or Glc6P at varying glucose concentrations (5-20 mm). The concentration control coefficient of glucokinase on Glc6P (1.4-1.7) was relatively independent of glucose concentration, whereas the flux control coefficients of Glc6P (2.4-1.0) and glucokinase (3.7-1.8) on glycogen synthesis decreased with glucose concentration. The high sensitivity of glycogenic flux to Glc6P at low glucose concentration is consistent with covalent modification by Glc6P of both phosphorylase and glycogen synthase. The high control strength of glucokinase on glycogenic flux is explained by its concentration control coefficient on Glc6P and the high control strength of Glc6P on glycogen synthesis. It is suggested that the regulatory strength of pharmacological glucokinase activators on glycogen metabolism can be predicted from their effect on the Glc6P content.  相似文献   

18.
Two substrains of the epithelial liver cell line C1I, one storing large amounts of glycogen, the other one being very poor in glycogen were used as a model for studying glycogen synthesis. The glycogen content of glycogen-rich cells doubled during the proliferative phase and remained high in plateau phase although glycogen synthase I activity was not significantly altered during growth cycle and was too low to account for the increase in glycogen. However, the activity of the glucose 6-phosphate (Glc6-P)-dependent synthase rose continuously during growth cycle, and intracellular Glc6-P-concentration increased about 10-fold in log phase cells to 0.72 mumol g-1 wet weight. A0.5 of synthase for Glc6-P was 0.79 mM. It was also found that in contrast to the enzyme from normal liver, glycogen phosphorylase a from C1I cells was inhibited by Glc6-P, the apparent Ki being 0.45 mM. It was concluded that glycogen accumulation in C1I cells was due to stimulation of synthase and inhibition of phosphorylase by Glc6-P. Findings from the glycogen-poor cell line which revealed similar specific activities of synthase and phosphorylase but only low Glc6-P (0.056 mumol g-1 wet weight) supported this conclusion. Addition of glucose to starved cells resulted in a transient activation of synthase in both cell lines. Net glycogen synthesis, was, however, only observed in the cells with a high Glc6-P-content. Thus, modulation of synthase and phosphorylase by Glc6-P and not activation/inactivation of the enzymes seems to play a predominant role in glycogen accumulation in this cell line.  相似文献   

19.
Fructose effect to suppress hepatic glycogen degradation   总被引:2,自引:0,他引:2  
The effect of fructose on glycogen degradation was examined by measuring the flux of 14C from prelabeled glycogen in perfused rat livers. During 2-h refeeding of 24-h-fasted rats, newly synthesized hepatic glycogen was labeled by intraperitoneal injection of [U-14C] galactose (0.1 mg and 0.02 microCi/g of body weight). The livers of refed rats were then perfused in a nonrecirculating fashion for an initial 30 min with glucose alone (10 mM) for the following 60 min with glucose (10 mM) without (n = 5) or with fructose (1, 2, or 10 mM; n = 5 for each). When livers were exposed to fructose, release of label into the perfusate immediately declined and remained markedly suppressed through the end of perfusion (p less than 0.05). The suppression was dose-dependent; at steady state (50-70 min), label release was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose, respectively (p less than 0.0001). Suppression was not accompanied by significant changes in the activities of glycogen synthase or phosphorylase assessed in vitro. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (Fru-1-P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.60 mumol/g of liver with 1, 2, and 10 mM fructose, respectively; p less than 0.0001). Maximum inhibition of label release was 82%; the Fru-1-P concentration for half inhibition was 0.57 mumol/g of liver, well within the concentration of Fru-1-P attained during refeeding. We conclude that fructose enhances net glycogen accumulation in liver by suppressing glycogenolysis and that the suppression is presumably caused by allosteric inhibition of phosphorylase by Fru-1-P.  相似文献   

20.
Glycogen synthase activation by sugars in isolated hepatocytes   总被引:2,自引:0,他引:2  
We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号