首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genome scan was conducted on 370 F2 Duroc-Landrace pigs. Microsatellite markers (n = 182) were genotyped across the entire F2 population, all F1 parents and the paternal grandparents. Breed of origin of all chromosomal segments inherited in F2 progeny were predicted using GenoProb, where genotypic data, genetic maps and extended pedigrees were used as inputs. Statistical tests for quantitative trait loci (QTL) associations were conducted on 41 phenotypes with SAS using output from GenoProb for genotypic data. Fixed effects included sex and age at slaughter. For certain analyses carcass weight, RYR1 genotype and/or PRKAG3 genotype were also included as covariates. Subjective and objective measures of pork colour, marbling and tenderness were recorded, as well as measures of carcass fatness and muscularity. Test results were adjusted to a genome-wide level of significance. Five genomic regions presented significant evidence for QTL at chromosome 1 positions 6 cM (intramuscular fat) and 67 cM (Hunter L*), chromosome 2 position 62 cM (taste panel tenderness), chromosome 17 position 50 (loineye area and image analysis estimated loineye area) and X position 87 cM (carcass weight). Sixty-six suggestive associations were detected. Fourteen of these associations were within the regions with significant QTL on chromosomes 2, 17 and X, and the remaining 52 associations resided in 29 other regions on 13 different chromosomes of the porcine genome. The chromosome 2 region of 60-66 cM was associated with all measures of pork tenderness and the region on chromosome 17 (32-39 cM) was associated with both measures of intramuscular fat and loineye area. After verification, the QTL for marbling and tenderness should be useful in commercial production to improve pork quality as the population was developed from two of the three most utilized breeds of swine in the USA.  相似文献   

2.
Carcass and meat quality traits are economically important in pigs. In this study, 17 carcass composition traits and 23 meat quality traits were recorded in 1028 F2 animals from a White Duroc × Erhualian resource population. All pigs in this experimental population were genotyped for 194 informative markers covering the entire porcine genome. Seventy-seven genome-wide significant quantitative trait loci (QTL) for carcass traits and 68 for meat quality were mapped to 34 genomic regions. These results not only confirmed many previously reported QTL but also revealed novel regions associated with the measured traits. For carcass traits, the most prominent QTL was identified for carcass length and head weight at 57 cM on SSC7, which explained up to 50% of the phenotypic variance and had a 95% confidence interval of only 3 cM. Moreover, QTL for kidney and spleen weight and lengths of cervical vertebrae were reported for the first time in pigs. For meat quality traits, two significant QTL on SSC5 and X were identified for both intramuscular fat content and marbling score in the longissimus muscle, while three significant QTL on SSC1 and SSC9 were found exclusively for IMF. Both LM and the semimembranous muscle showed common QTL for colour score on SSC4, 5, 7, 8, 13 and X and discordant QTL on other chromosomes. White Duroc alleles at a majority of QTL detected were favourable for carcass composition, while favourable QTL alleles for meat quality originated from both White Duroc and Erhualian.  相似文献   

3.
J. Ma  W. Qi  D. Ren  Y. Duan  R. Qiao  Y. Guo  Z. Yang  L. Li  D. Milan  J. Ren  L. Huang 《Animal genetics》2009,40(4):463-467
Chinese Erhualian pigs have larger and floppier ears compared with White Duroc pigs (small, half- or fully-pricked ears). To identify quantitative trait loci (QTL) for ear weight and area as well as erectness, a genome-wide scan with 194 microsatellites was performed in a White Duroc × Chinese Erhualian resource population (>1000 F2 animals). Twenty-three genome-wide significant QTL and 12 suggestive QTL were identified. All QTL for ear erectness and size detected in two previous studies, bar two on SSC6 and 9, were confirmed here. The 1% genome-wide significant QTL at 70 cM on SSC5 and at 58 cM on SSC7 have profound and pleiotropic effects on the three ear traits, with Erhualian alleles increasing weight and area but decreasing erectness. Notably, the 95% confidence interval of the QTL for weight and area on SSC7 spanned only 3 cM. New QTL reaching 1% genome-wide significance were found on SSC8 (at 37 cM) for all three ear traits, on SSC4 and 16 for weight and area, and on SSCX for area. Unexpectedly, Erhualian alleles at these loci were associated with lighter and smaller or erect ear. Some new suggestive QTL were also found on other chromosome regions. Almost all the QTL for weight and area had essentially additive effects, while the QTL for erectness on SSC2, 5 and 7 showed not only additive effects but also partial dominance effects of Erhualian alleles. The two most significant QTL on SSC7 and SSC5 could be promising targets for fine mapping and identification of the causative mutations.  相似文献   

4.
~~QTL alleles on chromosome 7 from fatty Meishan pigs reduce fat deposition@岳根华$Department of Animal Breeding and Biotechnology,University of Hohenheim!Garbenstr.17,70593 Stutt-gart,GermanyCurrent address:Institute of Molecular Agrobiology,national University of Singapore @Petra Beeckmann$Department of Animal Breeding and Biotechnology,University of Hohenheim!Garbenstr.17,70593 Stutt-gart,Germany @Gerhard Moser$Department of Animal Breeding and Biotechnology,University…  相似文献   

5.
Quantitative trait loci (QTL) influencing body weight were mapped by linkage analysis in crosses between a high body weight selected line (DU6) and a control line (DUKs). The two mouse lines differ in body weight by 106% and in abdominal fat weight by 100% at 42 days. They were generated from the same base population and maintained as outbred colonies. Determination of line-specific allele frequencies at microsatellite markers spanning the genome indicated significant changes between the lines on 15 autosomes and the X chromosome. To confirm these effects, a QTL analysis was performed using structured F2 pedigrees derived from crosses of a single male from DU6 with a female from DUKs. QTL significant at the genome-wide level were mapped for body weight on chromosome 11; for abdominal fat weight on chromosomes 4, 11, and 13; for abdominal fat percentage on chromosomes 3 and 4; and for the weights of liver on chromosomes 4 and 11, of kidney on chromosomes 2 and 9, and of spleen on chromosome 11. The strong effect on body weight of the QTL on chromosome 11 was confirmed in three independent pedigrees. The effect was additive and independent of sex, accounting for 21-35% of the phenotypic variance of body weight within the corresponding F2 populations. The test for multiple QTL on chromosome 11 with combined data from all pedigrees indicated the segregation of two loci separated by 36 cM influencing body weight.  相似文献   

6.
A genomic screening to detect quantitative trait loci (QTL) affecting growth, carcass composition and meat quality traits was pursued. Two hundred nineteen microsatellite markers were genotyped on 176 of 620 (28%) progeny from a Brahman x Angus sire mated to mostly MARC III dams. Selective genotyping, based on retail product yield (%) and fat yield (%), was used to select individuals to be genotyped. Traits included in the study were birth weight (kg), hot carcass weight (kg), retail product yield, fat yield, marbling score (400 = slight00 and 500 = small00), USDA yield grade, and estimated kidney, heart and pelvic fat (%). The QTL were classified as significant when the expected number of false positives (ENFP) was less than 0.05 (F-statistic greater than 17.3), and suggestive when the ENFP was <1 (F-statistic between 10.2 and 17.3). A significant QTL (F = 19; ENFP = 0.02) was detected for marbling score at centimorgan (cM) 54 on chromosome 2. Suggestive QTL were detected for fat yield at 50 cM, for retail product yield at 53 cM, and for USDA yield grade at 63 cM on chromosome 1, for marbling score at 56 cM, for retail product yield at 70 cM, and for estimated kidney, heart and pelvic fat at 79 cM on chromosome 3, for marbling score at 44 cM, for hot carcass weight at 49 cM, and for estimated kidney, heart and pelvic fat at 62 cM on chromosome 16, and for fat yield at 35 cM on chromosome 17. Two suggestive QTL for birth weight were identified, one at 12 cM on chromosome 20 and the other at 56 cM on chromosome 21. An additional suggestive QTL was detected for retail product yield, for fat yield, and for USDA yield grade at 26 cM on chromosome 26. Results presented here represent the initial search for quantitative trait loci in this family. Validation of detected QTL in other populations will be necessary.  相似文献   

7.
For detecting QTL in the whole swine genome, 1068 pigs from three F2 populations constructed by crossing European Wild boar and Pietrain (W×P), Meishan and Pietrain (M×P), and Wild Boar and Meishan (W × M) were genotyped for genetic markers evenly spaced at approximately 20 cM intervals. AQTL analysis was performed using a least-squares method. Here the results of the QTL analysis on the porcine chromosome 7 are presented. QTL for carcass composition (e.g. head weight, carcass length, backfat depth, abdominal fat and bacon meat) were mapped in the chromosomal region CYPA/CYPD-TNFB-S0102 in M×P and W×M, but not in W×P. The QTL explained 5.3%–27.2% of the F2 phenotypic variance in the two F2 populations. Most traits affected by the mapped QTL were related to carcass fatness. The mode of gene action of QTL was additive. Surprisingly, in contrast to the parental phenotype, the QTL alleles from fatty Meishan were associated with thinner backfat than Pietrain and Wild Boar alleles, suggesting that the genome of the fatty Meishan pig contains genes which can reduce fat content of carcass substantially.  相似文献   

8.
Ear size and erectness are important conformation measurements in pigs. An F(2) population established by crossing European Large White (small, erect ears) with Chinese Meishan (large, flop ears) was used to study the genetic influence of the two ear traits for the first time. A linkage map incorporating 152 markers on 18 autosomal chromosomes was utilised in a genome scan for QTL. Significant QTL were found on SSC1, 5, 7, 9 and 12 for the two traits. The QTL on SSC5 and SSC7 had major effects and were significant at the genome-wide level (P < 0.01). The QTL on SSC1 for ear erectness also had a major effect and was genome-wide significant (P < 0.01). The 95% confidence interval (CI) of the ear size QTL on SSC5 spanned only 4 cM. The QTL on SSC7 for the two ear traits each had a CI of <20 cM, and their positions overlapped with those of the major QTL affecting subcutaneous fat depths on the same chromosome. This study provides insights on the complex genetic influences underlying pig ear traits and will facilitate positional candidate gene analysis to identify causative DNA variants.  相似文献   

9.
Body weight and abdominal fat traits in meat-type chickens are complex and economically important factors. Our objective was to identify quantitative trait loci (QTL) responsible for body weight and abdominal fat traits in broiler chickens. The Northeast Agricultural University Resource Population (NEAURP) is a cross between broiler sires and Baier layer dams. We measured body weight and abdominal fat traits in the F(2) population. A total of 362 F(2) individuals derived from four F(1) families and their parents and F(0) birds were genotyped using 29 fluorescent microsatellite markers located on chromosomes 3, 5 and 7. Linkage maps for the three chromosomes were constructed and interval mapping was performed to identify putative QTLs. Nine QTL for body weight were identified at the 5% genome-wide level, while 15 QTL were identified at the 5% chromosome-wide level. Phenotypic variance explained by these QTL varied from 2.95 to 6.03%. In particular, a QTL region spanning 31 cM, associated with body weight at 1 to 12 weeks of age and carcass weight at 12 weeks of age, was first identified on chromosome 5. Three QTLs for the abdominal fat traits were identified at the 5% chromosome-wide level. These QTLs explained 3.42 to 3.59% of the phenotypic variance. This information will help direct prospective fine mapping studies and can facilitate the identification of underlying genes and causal mutations for body weight and abdominal fat traits.  相似文献   

10.
We performed a genome-wide QTL scan for production traits in a line cross between Duroc and Pietrain breeds of pigs, which included 585 F(2) progeny produced from 31 full-sib families genotyped with 106 informative microsatellites. A linkage map covering all 18 autosomes and spanning 1987 Kosambi cM was constructed. Thirty-five phenotypic traits including body weight, growth, carcass composition and meat quality traits were analysed using least square regression interval mapping. Twenty-four QTL exceeded the genome-wide significance threshold, while 47 QTL reached the suggestive threshold. These QTL were located at 28 genomic regions on 16 autosomal chromosomes and QTL in 11 regions were significant at the genome-wide level. A QTL affecting pH value in loin was detected on SSC1 between marker-interval S0312-S0113 with strong statistical support (P < 3.0 x 10(-14)); this QTL was also associated with meat colour and conductivity. QTL for carcass composition and average daily gain was also found on SSC1, suggesting multiple QTL. Seventeen genomic segments had only a single QTL that reached at least suggestive significance. Forty QTL exhibited additive inheritance whereas 31 QTL showed (over-) dominance effects. Two QTL for trait backfat thickness were detected on SSC2; a significant paternal effect was found for a QTL in the IGF2 region while another QTL in the middle of SSC2 showed Mendelian expression.  相似文献   

11.
大白×梅山杂交组合肉质性状的数量性状位点定位分析   总被引:4,自引:0,他引:4  
为寻找影响猪肉质数量性状基因位点的染色体区域 ,以 3头英系大白公猪和 7头梅山母猪建立F2 资源家系。随机选留 14 7头F2 代个体 (1998年 81头 ,2 0 0 0年 66头 ) ,经检测均获得肉质性状表型数据。对资源家系内的所有个体位于染色体 1、2、3、4、6和 7上的 48个微卫星位点进行扩增。利用线性模型最小二乘法分别对各年度及两年综合后的肉质性状进行数量性状位点 (QTL)区间定位 ,利用置换法确定显著性阈值。研究结果表明 :在 2 0 0 0年群体中 ,猪 4号染色体 (SSC4)上定位了肌内脂肪QTL ,达到染色体极显著水平 (P <0 0 1)和基因组显著水平 (P <0 0 5) ,解释表型变异为 5 2 4% ,梅山猪具有增加肌内脂肪QTL ;两年度群体综合后 ,在上述 4号染色体同一区间 ,肌内脂肪QTL接近染色体显著水平 ;股二头肌pH值和半棘肌pH值QTL分别定位在SSC1和 3上 ;在 1998年和 2 0 0 0年群体中分别发现 1个和 3个达染色体显著水平 (P <0 0 5)的系水力QTL ;在 1998年群体中 ,肌肉含水量QTL位于SSC6;两年综合群体中 ,SSC2、6和 7上定位了肌肉含水量QTL ,达到染色体显著水平 ,含水量QTL均有印迹效应 ,梅山和大白猪各有增效基因  相似文献   

12.
An F2 cross between Duroc and Large White pigs was carried out in order to detect quantitative trait loci (QTL) for 11 meat quality traits (L*, a* and b* Minolta coordinates and water-holding capacity (WHC) of two ham muscles, ultimate pH of two ham and one loin muscles), 13 production traits (birth weight, average daily gain during post-weaning and fattening periods, carcass fat depths at three locations, estimated lean meat content, carcass length and weights of five carcass cuts) and three stress hormone-level traits (cortisol, adrenaline and noradrenaline). Animals from the three generations of the experimental design (including 456 F2 pigs) were genotyped for 91 microsatellite markers covering all the autosomes. A total of 56 QTL were detected: 49 reached the chromosome-wide level (suggestive QTL with a maximal probability of 0.05) and seven were significant at the genome-wide level (with a probability varying from 6 × 10(-4) to 3 × 10(-3)). Twenty suggestive QTL were identified for ultimate pH, colour measurements and WHC on chromosome (SSC) 5, 6, 7, 8, 9, 11, 13, 14, 15 and 17. For production traits, 33 QTL were detected on all autosomes except SSC6, 8 and 9. Seven of these QTL, located on SSC2, 3, 10, 13, 16 and 17, exceeded the genome-wide significance threshold. Finally, three QTL were identified for levels of stress hormones: a QTL for cortisol level on SSC7 in the cortisol-binding globulin gene region, a QTL for adrenaline level on SSC10 and a QTL for noradrenaline level on SSC13. Among all the detected QTL, seven are described for the first time: a QTL for ultimate pH measurement on SSC5, two QTL affecting birth weight on SSC2 and 10, two QTL for growth rate on SSC15 (during fattening) and 17 (during post-weaning) and two QTL affecting the adrenaline and noradrenaline levels. For each QTL, only one to five of the six F1 sires were found to be heterozygous. It means that all QTL are segregating in at least one of the founder populations used in this study. These results suggest that both meat quality and production traits can be improved in purebred Duroc and Large White pigs through marker-assisted selection. It is of particular interest for meat quality traits, which are difficult to include in classical selection programmes.  相似文献   

13.
Results from a QTL experiment on growth and carcass traits in an experimental F2 cross between Iberian and Landrace pigs are reported. Phenotypic data for growth, length of carcass and muscle mass, fat deposition and carcass composition traits from 321 individuals corresponding to 58 families were recorded. Animals were genotyped for 92 markers covering the 18 porcine autosomes (SSC). The results from the genomic scan show genomewide significant QTL in SSC2 (longissimus muscle area and backfat thickness), SSC4 (length of carcass, backfat thickness, loin, shoulder and belly bacon weights) and SSC6 (longissimus muscle area, backfat thickness, loin, shoulder and belly bacon weights). Suggestive QTL were also found on SSC1, SSC5, SSC7, SSC8, SSC9, SSC13, SCC14, SSC16 and SSC17. A bidimensional genomic scan every 10 cM was performed to detect interaction between QTL. The joint action of two suggestive QTL in SSC2 and SSC17 led to a genome-wide significant effect in live weight. The results of the bidimensional genomic scan showed that the genetic architecture was mainly additive or the experimental set-up did not have enough power to detect epistatic interactions.  相似文献   

14.
To detect quantitative trait loci (QTL) that influence economically important traits in a purebred Japanese Black cattle population, we performed a preliminary genome-wide scan using 187 microsatellite markers across a paternal half-sib family composed of 258 offspring. We located six QTL at the 1% chromosome-wise level on bovine chromosomes (BTA) 4, 6, 13, 14 and 21. A second screen of these six QTL regions using 138 additional paternal offspring half-sib from the same sire, provided further support for five QTL: carcass weight on BTA14 (22-39 cM), one for rib thickness on BTA6 (27-58 cM) and three for beef marbling score (BMS) on BTA4 (59-67 cM), BTA6 (68-89 cM) and BTA21 (75-84 cM). The location of QTL for subcutaneous fat thickness on BTA13 was not supported by the second screen (P > 0.05). We determined that the combined contribution of the three QTLs for BMS was 10.1% of the total variance. The combined phenotypic average of these three Q was significantly different (P < 0.001) from those of other allele combinations. Analysis of additional half-sib families will be necessary to confirm these QTL.  相似文献   

15.
Ai H  Ren J  Zhang Z  Ma J  Guo Y  Yang B  Huang L 《Animal genetics》2012,43(4):383-391
Growth and fatness are economically important traits in pigs. In this study, a genome scan was performed to detect quantitative trait loci (QTL) for 14 growth and fatness traits related to body weight, backfat thickness and fat weight in a large-scale White Duroc × Erhualian F(2) intercross. A total of 76 genome-wide significant QTL were mapped to 16 chromosomes. The most significant QTL was found on pig chromosome (SSC) 7 for fatness with unexpectedly small confidence intervals of ~2 cM, providing an excellent starting point to identify causal variants. Common QTL for both fatness and growth traits were found on SSC4, 5, 7 and 8, and shared QTL for fat deposition were detected on SSC1, 2 and X. Time-series analysis of QTL for body weight at six growth stages revealed the continuously significant effects of the QTL on SSC4 at the fattening period and the temporal-specific expression of the QTL on SSC7 at the foetus and fattening stages. For fatness traits, Chinese Erhualian alleles were associated with increased fat deposition except that at the major QTL on SSC7. For growth traits, most of White Duroc alleles enhanced growth rates except for those at three significant QTL on SSC6, 7 and 9. The results confirmed many previously reported QTL and also detected novel QTL, revealing the complexity of the genetic basis of growth and fatness in pigs.  相似文献   

16.
For many species several similar QTL mapping populations have been produced and analyzed independently. Joint analysis of such data could be used to increase power to detect QTL and evaluate population differences. In this study, data were collated on almost 3000 pigs from seven different F(2) crosses between Western commercial breeds and either the European wild boar or the Chinese Meishan breed. Genotypes were available for 31 markers on chromosome 4 (on average 8.3 markers per population). Data from three traits common to all populations (birth weight, mean backfat depth at slaughter or end of test, and growth rate from birth to slaughter or end of test) were analyzed for individual populations and jointly. A QTL influencing birth weight was detected in one individual population and in the combined data, with no significant interaction of the QTL effect with population. A QTL affecting backfat that had a significantly greater effect in wild boar than in Meishan crosses was detected. Some evidence for a QTL affecting growth rate was detected in all populations, with no significant differences between populations. This study is the largest F(2) QTL analysis achieved in a livestock species and demonstrates the potential of joint analysis.  相似文献   

17.
QTL mapping for growth and carcass traits was performed using a paternal half-sib family composed of 325 Japanese Black cattle offspring. Nine QTL were detected at the 1% chromosome-wise significance level at a false discovery rate of less than 0.1. These included two QTL for marbling on BTA 4 and 18, two QTL for carcass weight on BTA 14 and 24, two QTL for longissimus muscle area on BTA 1 and 4, two QTL for subcutaneous fat thickness on BTA 1 and 15 and one QTL for rib thickness on BTA 6. Although the marbling QTL on BTA 4 has been replicated with significant linkages in two Japanese Black cattle sires, the three Q (more marbling) haplotypes, each inherited maternally, were apparently different. To compare the three Q haplotypes in more detail, high-density microsatellite markers for the overlapping regions were developed within the 95% CIs (65 markers in 44–78 cM). A detailed haplotype comparison indicated that a small region (<3.7 Mb) around 46 cM was shared between the Qs of the two sires, whose dams were related. An association of this region with marbling was shown by a regression analysis using the local population, in which the two sires were produced and this was confirmed by an association study using a population collected throughout Japan. These results strongly suggest that the marbling QTL on BTA 4 is located in the 3.7-Mb region at around 46 cM.  相似文献   

18.
Parent-of-origin effects were mapped by multimarker regression analysis in a cross between a high body weight selected line (DU6) and a control line (DUKs). The difference between F(2) progeny being heterozygous Qq and qQ (first allele is paternally derived) for grandpaternal Q and grandmaternal q alleles was genome-wide significant for the traits liver weight and spleen weight with a paternal imprinting effect at 1 cM on proximal chromosome 11. Suggestive imprinting effects (chromosome-wide error probability less than 0.05) were found for the traits body weight, liver weight, and kidney weight, and were located on chromosome 14 at 25 cM, 23 cM, and 32 cM, respectively. A genome-wide significant quantitative trait locus (QTL) for spleen weight at 26 cM slightly failed the suggestive significance level for imprinting. The effect was consistently maternal for all these traits on chromosome 14. Further suggestive imprinting effects were found for abdominal fat percentage on chromosome 3, for spleen weight on chromosome 5, and for liver weight on chromosome X. Our results are supported by a likely imprinting in a human genome region with homology to mouse chromosome 14 and agree well with the known imprinting of proximal chromosome 11 in the mouse.  相似文献   

19.
Protected designation of origin dry-cured hams are obtained from heavy pigs (slaughtered at about 160 kg of live weight). A specific breeding program designed to improve meat quality for this production has included as key traits the level of intermuscular fat between the leg muscles and ham weight loss during the seasoning period together with a balance between fat and lean cuts. In this study we carried out genome-wide association studies for seven traits used in the genetic merit of Italian Duroc heavy pigs, five related to meat and carcass quality traits (visible intermuscular fat, ham weight loss at first salting, backfat thickness, ham weight and lean cuts), and two related to performance and efficiency traits (average daily gain and feed : gain ratio). A total of 573 performance-tested pigs were genotyped with the Illumina PorcineSNP60 BeadChip and genome-wide association analyses were carried out using the Bayes B approach with the 1 Mb window option of GenSel and random residuals for each of the seven traits. Detected windows were supported by independent single nucleotide polymorphism analyses with a linear mixed model (LMM) approach on the same animals for the same traits. A total of 30 windows identifying different quantitative trait loci (QTL) were detected and among those, 27 were confirmed by LMM in one of these traits. Among the confirmed windows, three QTL were reported for visible intermuscular fat, seven for ham weight loss at first salting and five and four for backfat thickness and lean cut, respectively. A total of eight QTL were detected for the other production traits. No overlapping QTL were reported except for one window on porcine chromosome 10 between lean cuts and ham weight that contained the CACNB2 gene that has been already associated with loin marbling score in other Duroc pigs. Several regions contained genes that have been already associated with production traits in other pig breeds, including Duroc lines, related to fat deposition or muscle structure. This work reports, for the first time, genome-wide association study results for several traits in Italian Duroc heavy pigs. These results will be useful to dissect the genetic basis for dry-cured ham production traits that determine the total genetic merit index of Italian Duroc pigs.  相似文献   

20.
Mapping quantitative trait loci regulating chicken body composition traits   总被引:1,自引:0,他引:1  
Genome scans were conducted on an F2 resource population derived from intercross of the White Plymouth Rock with the Silkies Fowl to detect QTL affecting chicken body composition traits. The population was genotyped with 129 microsatellite markers and phenotyped for 12 body composition traits on 238 F2 individuals from 15 full-sib families. In total, 21 genome-wide QTL were found to be responsible for 11 traits, including two newly studied traits of proventriculus weight and shank girth. Three QTL were genome-wide significant: at 499 c m on GGA1 (explained 3.6% of phenotypic variance, P  < 0.01) and 51 c m on GGA5 (explained 3.3% of phenotypic variance, P  < 0.05) for the shank & claw weight and 502 c m on GGA1 (explained 1.4% of phenotypic variance, P  < 0.05) for wing weight. The QTL on GGA1 seemed to have pleiotropic effects, also affecting gizzard weight at 490 c m , shank girth at 489 c m and intestine length at 481 c m . It is suggested that further efforts be made to understand the possible pleiotropic effects of the QTL on GGA1 and that on GGA5 for two shank-related traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号