首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Garg R  Pandey KN 《Peptides》2005,26(6):1009-1023
  相似文献   

2.
3.
Summary The putative second messenger of certain atrial natriuretic factor (ANF) signal transductions is cyclic GMP. Recently, we purified a 180-kDa protein, apparently containing both ANF receptor and guanylate cyclase activities, and hypothesized that this is one of the cyclic GMP transmembrane signal transducers. The enzyme is ubiquitous and appears to be conserved. Utilizing the 180-kDa membrane guanylate cyclase, we now show that the 180-kDa guanylate cyclase is regulated in opposing fashions by two receptor signals—ANF stimulating it and protein kinase C inhibiting it. Furthermore, protein kinase C phosphorylates the 180-kDa enzyme. This suggests a novel switch on and switch off mechanism of the cyclic GMP signal transduction. Switch off represents the phosphorylation while switch on the dephosphorylation of the enzyme.  相似文献   

4.
5.
The effects of alpha-rat atrial natriuretic peptide (alpha-rANP) and sodium nitroprusside on the activity of rat lung particulate guanylate cyclase were examined. The particulate guanylate cyclase in partially purified rat lung membranes was stimulated by both alpha-rANP and nitroprusside. The effects of alpha-rANP and nitroprusside were, however, not additive. Diamide and N-ethylmaleimide almost completely abolished the nitroprusside-mediated stimulation, while they had only moderate effects on the alpha-rANP-mediated stimulation of the enzyme activity. ATP potentiated the enzyme stimulation by alpha-rANP, whereas it had no effect on the nitroprusside-mediated stimulation. These findings suggest that the stimulation of lung particulate guanylate cyclase activity by alpha-rANP and nitroprusside is mediated by different mechanisms.  相似文献   

6.
Pandey KN 《Peptides》2005,26(6):985-1000
One of the principal loci involved in the regulatory action of atrial and brain natriuretic peptides (ANP and BNP) is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), whose ligand-binding efficiency and GC catalytic activity vary remarkably in different target cells and tissues. In its mature form, NPRA resides in the plasma membrane and contains an extracellular ligand-binding domain, a single transmembrane region, and the intracellular protein kinase-like homology domain (KHD) and guanylyl cyclase (GC) catalytic domain. NPRA is a dynamic cellular macromolecule that traverses through different compartments of the cell through its lifetime. Binding of ligand to NPRA triggers a complex array of signal transduction events and accelerates the endocytosis. The endocytic transport is important in regulating signal transduction, formation of specialized signaling complexes, and modulation of specific components of internalization events. The present review describes the experiments which reveal the internalization of ligand-receptor complexes of NPRA, receptor trafficking and recycling, and delivery of both ligand-receptor molecules into subcellular compartments. The ligand-receptor complexes of NPRA are finally degraded within the lysosomes. The experimental evidence provides a consensus forum, which establishes the endocytosis, cellular trafficking, sequestration, and metabolic processing of ANP/NPRA complexes in the intact cells. The discussion is afforded to address the experimental insights into the mechanisms that cells utilize in modulating the delivery and metabolic processing of ligand-bound NPRA into the cell interior.  相似文献   

7.
8.
Receptors for atrial natriuretic peptide (ANP) are heterogeneous: an approximately 140-kDa receptor exhibits ANP-stimulated guanylate cyclase activity whereas an approximately 65-kDa receptor is thought to act only as a clearance-storage protein. We have used photoaffinity labeling techniques to show that the human cell line, HeLa, contains predominantly the approximately 140-kDa ANP receptor. In contrast, several other cell lines contain primarily the approximately 65-kDa receptor. In HeLa cells, ANP bound specifically to high affinity binding sites (Kd approximately 2 nM) and stimulated a rapid, dose-dependent accumulation of cGMP. These cell lines can thus provide useful models to study the multiple mechanisms of ANP action.  相似文献   

9.
We have prepared an atrial natriuretic peptide analog, ANP[13-27][1-12], in which the connectivity of the disulfide-linked ring has been reversed by formally cleaving the ring and cyclizing the N- and C-terminal tails. This analog, which retains many of the spatial relationships of the native molecule, binds to both ANP-A and ANP-C receptor subtypes, and triggers the production of cyclic-GMP by ANP-A. ANP-C binding of ANP[13-27][1- 12] is roughly equipotent to that of ANP itself, although the ring cleavage falls within the putative ANP-C binding domain. ANP[13-27][1-8], a truncated analog in which much of this binding domain has been removed, surprisingly maintains a high affinity for ANP-C; however, this peptide has lost the ability to activate the ANP-A-linked guanylate cyclase.  相似文献   

10.
The guanylyl cyclase/natriuretic peptide receptor-A (NPRA), also referred to as GC-A, is a single polypeptide molecule. In its mature form, NPRA resides in the plasma membrane and consists of an extracellular ligand-binding domain, a single transmembrane-spanning region, and intracellular cytoplasmic domain that contains a protein kinase-like homology domain (KHD) and a guanylyl cyclase (GC) catalytic active site. The binding of atrial natriuretic peptide (ANP) to NPRA occurs at the plasma membrane; the receptor is synthesized on the polyribosomes of the endoplasmic reticulum, and is presumably degraded within the lysosomes. It is apparent that NPRA is a dynamic cellular macromolecule that traverses through different compartments of the cell through its lifetime. This review describes the experiments addressing the interaction of ANP with the NPRA, the receptor-mediated internalization and stoichiometric distribution of ANP-NPRA complexes from cell surface to cell interior, and its release into culture media. It is hypothesized that after internalization, the ligand-receptor complexes dissociate inside the cell and a population of NPRA recycles back to plasma membrane. Subsequently, some of the dissociated ligand molecules escape the lysosomal degradative pathway and are released intact into culture media, which reenter the cell by retroendocytotic mechanisms. By utilizing the pharmacologic and physiologic perturbants, the emphasis has been placed on the cellular regulation and processing of ligand-receptor complexes in intact cells. I conclude the discussion by examining the data available on the utilization of deletion mutations of NPRA cDNA, which has afforded experimental insights into the mechanisms the cell utilizes in modulating the expression and functioning of NPRA.  相似文献   

11.
Alterations of the chemical structure of protoporphyrin IX markedly altered the activation of soluble guanylate cyclase purified from bovine lung. Hydrophobic side chains at positions 2 and 4 and vicinal propionic acid residues at positions 6 and 7 of the porphyrin ring (protoporphyrin IX, mesoporphyrin IX) were essential for maximal enzyme activation (Ka = 7-8 nM; Vmax = 6-8 mumol of cGMP/min/mg). Substitution of hydrophobic with polar groups (hematoporphyrin IX, coproporphyrin III), or with hydrogen atoms ( deuteroporphyrin IX), and methylation of propionate residues resulted in decreased enzyme stimulation. Stimulatory porphyrins increased the Vmax and the apparent affinities of enzyme for MgGTP and uncomplexed Mg2+. An open central core in the porphyrin ring was essential for enzyme activation. The pyrrolic nitrogen adduct, N-phenylprotoporphyrin IX, was inhibitory and competitive with protoporphyrin IX (KI = 73 nM). Similarly, metalloporphyrins inhibited enzymatic activity and ferro-protoporphyrin IX (KI = 350 nM), zinc-protoporphyrin IX (KI = 50 nM) and manganese-protoporphyrin IX (KI = 9 nM) were competitive with protoporphyrin IX. Inhibitory porphyrins and metalloporphyrins also prevented enzyme activation by S-nitroso-N- acetylpenicillamine and NO. Guanylate cyclase reconstituted with such porphyrins required higher concentrations of protoporphyrin IX for further activation and were not activated by NO. Thus, porphyrins, metalloporphyrins, and NO appeared to interact at a common binding site on guanylate cyclase. This common site is likely that which normally binds heme and, therefore, NO-heme when the heme-containing enzyme is exposed to NO. Thus, NO and nitroso compounds may react with enzyme-bound heme to generate a modified porphyrin which structurally resembles protoporphyrin IX in its interaction with guanylate cyclase.  相似文献   

12.
The potent diuretic and natriuretic peptide hormone atrial natriuretic factor (ANF), with vasodilatory activity also stimulates steroidogenic responsiveness in Leydig cells. The actions of ANF are mediated by its interaction with specific cell surface receptors and the membrane-bound form of guanylate cyclase represents an atrial natriuretic factor receptor (ANF-R). To understand the mechanism of ANF action in testicular steroidogenesis and to identify guanylate cyclase/ANF-R that is expressed in the Leydig cells, the primary structure of murine guanylate cyclase/ANF-R has been deduced from its cDNA sequence. A cDNA library constructed from poly(A+) RNA of murine Leydig tumor (MA-10) cell line was screened for the membrane-bound form of ANF-R/guanylate cyclase sequences by hybridization with a rat brain guanylate cyclase/ANF-R cDNA probe. The amino acid sequence deduced from the cDNA shows that murine guanylate cyclase/ANF-R cDNA consists of 1057 amino acids with 21 amino acids comprising the transmembrane domain which separates an extracellular ligand-binding domain (469 amino acid residues) and an intracellular guanylate cyclase domain (567 amino acid residues). Upon transfection of the murine guanylate cyclase/ANF-R cDNA in COS-7 cells, the expressed protein showed specific binding to 125I-ANF, stimulation of guanylate cyclase activity and production of intracellular cGMP in response to ANF. The expression of guanylate cyclase/ANF-R cDNA transfected in rat Leydig tumor cells stimulated the production of testosterone and intracellular cGMP after treatment with ANF. The results presented herein directly show that ANF can regulate the testicular steroidogenic responsiveness in addition to its known regulatory role in the control of cardiovascular homeostasis.  相似文献   

13.
Summary We studied the cytochemical localization of particulate guanylate cyclase (GC) in rat adrenal gland after stimulation with porcine brain natriuretic peptide (pBNP) by electron microscopy. In the adrenal cortex, GC activity, as demonstrated by the presence of reaction product, was prevalently localized to the zona glomerulosa and zona fasciculata, while the zona reticularis showed little GC reaction product. In the adrenal medulla, GC reaction product was present only in adrenalin-containing cells. All GC positivity was associated with intracellular membranes. No GC reaction product was detected in specimens incubated in media devoid of pBNP. In parallel samples incubated in the presence of rat atrial natriuretic factor (rANF), the distribution of rANF-stimulated GC activity was similar to that of pBNP-stimulated GC activity.  相似文献   

14.
The stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity by atrial natriuretic peptide (ANP) was compared to the affinity and number of ANP receptors in eight cultured cell types. At 100 nM, ANP increased cyclic GMP by 13-fold in bovine adrenal cortical, 35-fold in human lung fibroblast, 58-fold in canine kidney epithelial, 60-fold in bovine aortic smooth muscle, 120-fold in rat mammary epithelial, 260-fold in rat Leydig, 300-fold in bovine kidney epithelial, and 475-fold in bovine aortic endothelial cells. ANP (1 microM) increased particulate guanylate cyclase activity by 1.5-, 2.5-, 3.1-, 3.2-, 5.0-, 7.0-, 7.8-, and 8.0-fold in bovine adrenal cortical, bovine aortic smooth muscle, human lung fibroblast, canine kidney epithelial, rat mammary epithelial, rat Leydig, bovine kidney epithelial, and bovine aortic endothelial cells, respectively. Specific 125I-ANP binding to intact rat Leydig (3,000 sites/cell; Kd = 0.11 nM), bovine aortic endothelial (14,000 sites/cell; Kd = 0.09 nM), bovine adrenal cortical (50,000 sites/cell; Kd = 0.12 nM), human lung fibroblast (80,000 sites/cell; Kd = 0.32 nM), and bovine aortic smooth muscle (310,000 sites/cell; Kd = 0.82 nM) cells was saturable and high affinity. No specific and saturable ANP binding was detected in bovine and canine kidney epithelial and rat mammary epithelial cells. Two ANP-binding sites of 66,000 and 130,000 daltons were specifically labeled by 125I-ANP after cross-linking with disuccinimidyl suberate. The 130,000-dalton ANP-binding sites bound to a GTP-agarose affinity column, and the specific activity of guanylate cyclase was increased by 90-fold in this fraction. Our results demonstrate that the increase in cyclic GMP accumulation and particulate guanylate cyclase activity by ANP does not correlate with the affinity and number of ANP-binding sites. These results suggest that multiple populations of ANP receptors exist in these cells and that only one receptor subtype (130,000 daltons) is associated with particulate guanylate cyclase activity.  相似文献   

15.
Pandey KN 《The FEBS journal》2011,278(11):1792-1807
The cardiac hormones atrial natriuretic peptide and B-type natriuretic peptide (brain natriuretic peptide) activate guanylyl cyclase (GC)-A/natriuretic peptide receptor-A (NPRA) and produce the second messenger cGMP. GC-A/NPRA is a member of the growing family of GC receptors. The recent biochemical, molecular and genomic studies on GC-A/NPRA have provided important insights into the regulation and functional activity of this receptor protein, with a particular emphasis on cardiac and renal protective roles in hypertension and cardiovascular disease states. The progress in this field of research has significantly strengthened and advanced our knowledge about the critical roles of Npr1 (coding for GC-A/NPRA) in the control of fluid volume, blood pressure, cardiac remodeling, and other physiological functions and pathological states. Overall, this review attempts to provide insights and to delineate the current concepts in the field of functional genomics and signaling of GC-A/NPRA in hypertension and cardiovascular disease states at the molecular level.  相似文献   

16.
J A Cherner  G Singh  L Naik 《Life sciences》1990,47(7):669-677
The present study examined the effect of atrial natriuretic factor (ANF) on cGMP generation by dispersed chief cells from guinea pig stomach. ANF caused a rapid dose-dependent increase in cGMP, a 7-fold increase in cGMP caused by 1 microM ANF, with or without 3-isobutyl-1-methylxanthine present. Methylene blue reduced cGMP in response to nitroprusside but not ANF. Guanylate cyclase activity of a chief cell membrane fraction doubled in response to ANF, but was not affected by nitroprusside. ANF had no effect on guanylate cyclase activity of the soluble fraction of lysed chief cells. Dose-response curves for whole cell cGMP production and membrane guanylate cyclase activity in response to ANF were closely related. These data indicate that ANF increases chief cell cGMP production by activating particulate guanylate cyclase, providing functional evidence that chief cells possess surface membrane receptors for ANF.  相似文献   

17.
A 23 amino acid synthetic peptide fragment of atrial natriuretic factor (ANF) stimulated guanylate cyclase activity in isolated human glomeruli in a concentration- and time-dependent manner. ANF activated particulate guanylate cyclase whereas it had no effect on soluble guanylate cyclase. These results demonstrate that the glomerulus is a target structure for ANF in humans. They also suggest that ANF-induced increase in glomerular filtration rate is due to a direct effect of this peptide on the glomerular cells mediated by activation of glomerular guanylate cyclase.  相似文献   

18.
Natriuretic peptides (NP) activate particulate guanylate cyclase (pGC) and nitric oxide (NO) activates soluble guanylate cyclase (sGC). Both guanylate cyclases catalyse the formation of the same second messenger, cyclic guanosine 3',5'-monophosphate (cGMP), which activates the cGMP-dependent protein kinases (PKG). PKG then starts a signalling cascade that mediates many cardiovascular and renal effects, such as smooth muscle relaxation and diuresis. Many cell types possess both sGC and pGC. Because both GC-cGMP systems play complementary roles, an interaction between the two pathways might represent an important physiological control mechanism. In this report we demonstrate an interaction between the two pathways. C-type natriuretic peptide (CNP) decreased the beta-subunit of sGC (sGC-beta) steady-state protein levels and enzymatic activity in cultured human mesangial cells (HMC) in a time- and dose-dependent manner. This down-regulation was not dependent on changes in sGC-beta mRNA levels. Treatment of the cells with the stable cGMP analogue 8-Br-cGMP or the phosphodiesterase type-5 inhibitor Zaprinast produced the same down-regulatory effect. Inhibition of PKG or proteasome activity prevented the CNP-induced reduction of sGC-beta protein levels and activity. Taken together, these results demonstrate that pGC activation induces a post-transductional down-regulation of sGC by a mechanism involving PKG and the proteasome pathway.  相似文献   

19.
20.
Summary A line of kidney cells (PK,) which does not possess measurable ANP binding but has an active particulate guanylate cyclase has been identified. The physical characteristics of this enzyme were compared with those of particulate guanylate cyclase and ANP receptors isolated from rat lung. Although receptor and enzyme appear to reside on the same protein in the lung while the cyclase from PK1 cells does not possess ANP binding activity, these proteins exhibit identical physical characteristics. Guanylate cyclase from PK1 cells and rat lung and ANP receptor from lung co-eluted during gel filtration chromatography, with a Stokes radius of 6.1 nm. Also, these activities co-migrated through sucrose density gradients with S20,w values of 10.4 to 10.9. Using these parameters, a molecular weight of about 270 kD was estimated for all three activities. Furthermore, these enzyme activities exhibited similar mobilities in isoelectric focusing gels, with a pI of 6.1. Thus, although particulate guanylate cyclase from lung presumably possesses receptor binding activity, it is physically identical to a form of this enzyme associated with no measurable binding activity. Possible explanations for these observations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号