首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulation of citrate synthase activity in escherichia coli   总被引:8,自引:0,他引:8  
  相似文献   

2.
We have studied the inhibitory effect of five polyphenols namely, resveratrol, piceatannol, quercetin, quercetrin, and quercetin-3-β-d glucoside on Escherichia coli ATP synthase. Recently published X-ray crystal structures of bovine mitochondrial ATP synthase inhibited by resveratrol, piceatannol, and quercetin, suggest that these compounds bind in a hydrophobic pocket between the γ-subunit C-terminal tip and the hydrophobic inside of the surrounding annulus in a region critical for rotation of the γ-subunit. Herein, we show that resveratrol, piceatannol, quercetin, quercetrin, or quercetin-3-β-d glucoside all inhibit E. coli ATP synthase but to different degrees. Whereas piceatannol inhibited ATPase essentially completely (~0 residual activity), inhibition by other compounds was partial with ~20% residual activity by quercetin, ~50% residual activity by quercetin-3-β-d glucoside, and ~60% residual activity by quercetrin or resveratrol. Piceatannol was the most potent inhibitor (IC50 ~14 μM) followed by quercetin (IC50 ~33 μM), quercetin-3-β-d glucoside (IC50 ~71 μM), resveratrol (IC50 ~94 μM), quercitrin (IC50 ~120 μM). Inhibition was identical in both F1Fo membrane preparations as well as in isolated purified F1. In all cases inhibition was reversible. Interestingly, resveratrol and piceatannol inhibited both ATPase and ATP synthesis whereas quercetin, quercetrin or quercetin-3-β-d glucoside inhibited only ATPase activity and not ATP synthesis.  相似文献   

3.
4.
Quinolinic acid (QA) is a key intermediate of nicotinic acid (Niacin) which is an essential human nutrient and widely used in food and pharmaceutical industries. In this study, a quinolinic acid producer was constructed by employing comprehensive engineering strategies. Firstly, the quinolinic acid production was improved by deactivation of NadC (to block the consumption pathway), NadR (to eliminate the repression of L-aspartate oxidase and quinolinate synthase), and PtsG (to slow the glucose utilization rate and achieve a more balanced metabolism, and also to increase the availability of the precursor phosphoenolpyruvate). Further modifications to enhance quinolinic acid production were investigated by increasing the oxaloacetate pool through overproduction of phosphoenolpyruvate carboxylase and deactivation of acetate-producing pathway enzymes. Moreover, quinolinic acid production was accelerated by assembling NadB and NadA as an enzyme complex with the help of peptide-peptide interaction peptides RIAD and RIDD, which resulted in up to 3.7 g/L quinolinic acid being produced from 40 g/L glucose in shake-flask cultures. A quinolinic acid producer was constructed in this study, and these results lay a foundation for further engineering of microbial cell factories to efficiently produce quinolinic acid and subsequently convert this product to nicotinic acid for industrial applications.  相似文献   

5.
Growth of streptomycin-dependent mutants of Escherichia coli K-12 was insensitive to valine when dihydrostreptomycin was present in a nonlimiting concentration in glucose-salts medium. Acetohydroxy acid synthase was derepressed under these conditions, owing to relaxation of catabolite repression. Valine sensitivity and catabolite repression were restored when streptomycin-dependent E. coli K-12 mutants were grown with limiting dihydrostreptomycin. End product repression of acetohydroxy acid synthase under conditions of relaxed catabolite repression was effected by any two (or more) end products except the combination valine plus isoleucine, which caused derepression. Single end products had no detectable effect on acetohydroxy acid synthase formation.  相似文献   

6.
Ahmad Z  Senior AE 《FEBS letters》2006,580(2):517-520
Inhibition of ATPase activity of Escherichia coli ATP synthase by magnesium fluoride (MgFx) was studied. Wild-type F(1)-ATPase was inhibited potently, albeit slowly, when incubated with MgCl(2), NaF, and NaADP. The combination of all three components was required. Reactivation of ATPase activity, after removal of unbound ligands, occurred with half-time of approximately 14 h at 22 degrees C and was quasi-irreversible at 4 degrees C. Mutant F(1)-ATPases, in which catalytic site residues involved in transition state formation were modified, were found to be resistant to inhibition by MgFx. The data demonstrate that MgFx in combination with MgADP behaves as a tight-binding transition state analog in E. coli ATP synthase.  相似文献   

7.
8.
Nicotinamide adenine dinucleotide (NAD) derives from quinolinic acid which is synthesized in Escherichia coli from l-aspartate and dihydroxyacetone phosphate through the concerted action of l-aspartate oxidase and the [4Fe-4S] quinolinate synthase (NadA). Here, we addressed the question of the identity of the cluster ligands. We performed in vivo complementation experiments as well as enzymatic, spectroscopic and structural in vitro studies using wild-type vs. Cys-to-Ala mutated NadA proteins. These studies reveal that only three cysteine residues, the conserved Cys113, Cys200 and Cys297, are ligands of the cluster. This result is in contrast to the previous proposal that pointed the three cysteines of the C(291)XXC(294)XXC(297) motif. Interestingly, we demonstrated that Cys291 and Cys294 form a disulfide bridge and are important for activity.  相似文献   

9.
Quinolinate synthetase catalyzes the second step of the de novo biosynthetic pathway of pyridine nucleotide formation. In particular, quinolinate synthetase is involved in the condensation of dihydroxyacetone phosphate and iminoaspartate to form quinolinic acid. To study the mechanism of action, the specificity of the enzyme and the interaction with l-aspartate oxidase, the other component of the so-called "quinolinate synthetase complex," the cloning, the overexpression, and the purification to homogeneity of Escherichia coli quinolinate synthetase were undertaken. The results are presented in this paper. Since the overexpression of the enzyme resulted in the formation of inclusion bodies, a procedure of renaturation and refolding had to be set up. The overexpression and purification procedure reported in this paper allowed the isolation of 12 mg of electrophoretically homogeneous quinolinate synthetase from 1 liter of E. coli culture. A new, continuous, method for the evaluation of quinolinate synthetase activity was also devised and is presented. Finally, our data definitely exclude the possibility that other enzymes are involved in the biosynthesis of quinolinic acid in E. coli, since it is possible to synthesize quinolinic acid from l-aspartate, dihydroxyacetone phosphate, and O(2) by using only nadA and nadB gene overexpressed products.  相似文献   

10.
The effects of several metabolites (indole acetic acid, imidazole acetic acid and indole) on acetohydroxy acid synthase activities have been examined in both cya+ and cya- strains. Specifically, indole acetic acid caused an increase in the rate of acetohydroxy acid synthase synthesis under both in vivo and in vitro conditions. Taken together, these data suggest that small metabolites, other than cAMP, can alter acetohydroxy acid synthase gene expression.  相似文献   

11.
The Escherichia coli open reading frame f413, which has the potential to code for a polypeptide homologous to cardiolipin (CL) synthase, has been cloned. Its polypeptide product has a molecular mass of 48 kDa, is membrane-bound, and catalyzes CL formation but does not hydrolyze CL. A comparison of the sequences predicted for the polypeptides encoded by f413 and cls indicates that the N-terminal residues specified by cls may be unnecessary for CL synthase activity. Construction of a truncated cls gene and characterization of its polypeptide product have confirmed this conclusion.  相似文献   

12.
Evidence for the formation of an unstable intermediate in the synthesis of quinolinate from aspartate and dihydroxyacetone phosphate by Escherichia coli was obtained using toluenized cells of nadA and nadB mutants of this organism and partially purified A and B proteins in dialysis and membrane cone experiments. The results of these experiments indicate that the nadB gene product forms an unstable compound from aspartate in the presence of flavine adenine dinucleotide, and that this compound is then condensed with dihydroxyacetone phosphate to form quinolinate in a reaction catalyzed by the nadA gene product.  相似文献   

13.
14.
IscS plays a principal role in the synthesis of sulfur-containing biomolecules. It is known that the expression of iscS can be negatively regulated by IscR, the first gene product of iscRSUA-hscBA-fdx. What governs the regulation of cysteine desulfurase activity, however, is unknown. Here, we report that IscS from Escherichia coli is able to bind iron with an association constant of 1.6 × 1017 M−1 to form an IscS-iron complex. IscS is also capable of binding both iron and sulfide to form an IscS-iron-sulfide complex with a higher affinity. The desulfurase activity is gradually inhibited as the amount of iron and sulfide bound to IscS increases. When 2Fe-2S binds IscS, about 20% of the activity is inhibited; when 8Fe-8S adheres to IscS, about 70% of the activity is inhibited. Thus, the cell is able to modulate its desulfurase activity with the formation of an IscS-iron-sulfide complex.  相似文献   

15.
Escherichia coli possesses two hydrogenases, Hyd-3 and Hyd-4. These, in conjunction with formate dehydrogenase H (Fdh-H), constitute distinct membrane-associated formate hydrogenlyases, FHL-1 and FHL-2, both catalyzing the decomposition of formate to H2 and CO2 during fermentative growth. FHL-1 is the major pathway at acidic pH whereas FHL-2 is proposed for slightly alkaline pH. In this study, regulation of activity of these pathways by formate has been investigated. In cells grown under fermentative conditions on glucose in the presence of 30 mM formate at pH 7.5, intracellular pH was decreased to 7.1, the activity of Fdh-H raised 3.5-fold, and the production of H2 became mostly Hyd-3 dependent. These results suggest that at alkaline pH formate increases an activity of Fdh-H and of Hyd-3 both but not of Hyd-4. Received: 27 December 2001 / Accepted: 25 January 2002  相似文献   

16.
17.
Polar cap formation has been studied in synchronized Escherichia coli cells. It is dependent on a signal given after completion of a round of DNA replication. A 20 min time interval between the release of this signal and physical cell separation is probably the time required for the completion of polar caps. During this time murein is synthesized at an increased rate and cells are especially sensitive to penicillin.  相似文献   

18.
Regulation of sugar accumulation by Escherichia coli   总被引:4,自引:0,他引:4  
  相似文献   

19.
20.
1. Citrate synthase has been purified from Escherichia coli and shown to exist at an equilibrium between three forms: monomer (mol.wt. 57000), tetramer (mol.wt. 230000) and, possibly, octamer. Modification of the enzyme by photo-oxidation and by treatment with specific chemical reagents has been carried out to gain information on the amino acid residues involved in enzymic activity and in the inhibition of activity by NADH and alpha-oxoglutarate. 2. Several photo-oxidizable amino acids appear to be involved in activity. The nature of the pH-dependence of their rates of photo-oxidation with Methylene Blue suggests that these are histidines, a conclusion supported by the greater rate of photo-inactivation with Rose Bengal and the destruction of activity by diethyl pyrocarbonate. 3. The participation of histidine at the alpha-oxoglutarate effector site is indicated by photo-oxidation and the participation of cysteine at the NADH effector site suggested by photo-oxidation is confirmed by the desensitization to NADH produced by treatment with 5,5'-dithiobis-(2-nitrobenzoate). Inactivation of the enzyme after modification with this reagent suggests the additional involvement of cysteine in catalytic activity. 4. Amino acid analyses of native and photo-oxidized enzyme are consistent with these conclusions. 5. Modification with 2-hydroxy-5-nitrobenzyl bromide indicates the participation of tryptophan in the activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号