首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study is to investigate the characteristics of the recombinant variant ofhuman vascular endothelial cell growth inhibitor,VEGI_(72-251),and compare its biological activities with that ofits prototype VEGI_(24-174),The recombinant plasmid containing the variant VEGI_(72-251) gene was constructedand expressed in Escherichia coli.The effects of the expressed VEGI_(72-251) on cell proliferations were checkedin the human umbilical vein endothelial cell line and certain tumor cell lines (ECV304 and B 16).The inhibitionof VEGI_(72-251) on angiogenesis was detected in the chorioallantoic membrane of chick embryos.In comparisonwith VEGI_(24-174),the recombinant human VEGI_(72-251) seems to have no effect on the proliferation of endothelialcells and the angiogenesis of the chorioallantoic membrane in vitro.An enzyme-linked immunosorbent assay-based method was used for the measurement of interleukin-2 (IL-2) production by peripheral blood monocytes(PBMCs) treated with VEGI_(72-251).PBMCs were pretreated with VEGI_(72-251) (1.25-12.50μg/ml) for 24 h invitro,and the IL-2 concentration in PBMC medium was increased from 354 pg/ml to 1256 pg/ml.It can beconcluded that VEGI_(72-251) is able to increase the level of human IL-2 production by the activation of Tlymphocytes.Differing from VEGI_(24-174) on anti-angiogenesis,VEGI_(72-251) may serve as an anti-cancer factorthrough its activation of T lymphocytes.  相似文献   

2.
Vascular endothelial growth factor (VEGF) was originally identified as an endothelial cell specific growth factor stimulating angiogenesis and vascular permeability. Some family members, VEGF C and D, are specifically involved in lymphangiogenesis. It now appears that VEGF also has autocrine functions acting as a survival factor for tumour cells protecting them from stresses such as hypoxia, chemotherapy and radiotherapy. The mechanisms of action of VEGF are still being investigated with emerging insights into overlapping pathways and cross-talk between other receptors such as the neuropilins which were not previously associated with angiogenesis. VEGF plays an important role in embryonic development and angiogenesis during wound healing and menstrual cycle in the healthy adult. VEGF is also important in a number of both malignant and non-malignant pathologies. As it plays a limited role in normal human physiology, VEGF is an attractive therapeutic target in diseases where VEGF plays a key role. It was originally thought that in pathological conditions such as cancer, VEGF functioned solely as an angiogenic factor, stimulating new vessel formation and increasing vascular permeability. It has since emerged it plays a multifunctional role where it can also have autocrine pro-survival effects and contribute to tumour cell chemoresistance. In this review we discuss the established role of VEGF in angiogenesis and the underlying mechanisms. We discuss its role as a survival factor and mechanisms whereby angiogenesis inhibition improves efficacy of chemotherapy regimes. Finally, we discuss the therapeutic implications of targeting angiogenesis and VEGF receptors, particularly in cancer therapy.  相似文献   

3.
Angiogenesis is heavily influenced by VEGF-A and its family of receptors, particularly VEGF receptor 2 (VEGF-R2). Like most cell surface proteins, VEGF-R2 is glycosylated, although the function of VEGF-R2 with respect to its glycosylation pattern is poorly characterized. Galectin-3, a glycan binding protein, interacts with the EGF and TGFβ receptors, retaining them on the plasma membrane and altering their signal transduction. Because VEGF-R2 is glycosylated and both galectin-3 and VEGF-R2 are involved with angiogenesis, we hypothesized that galectin-3 binds VEGF-R2 and modulates its signal transduction as well. Employing a Western blot analysis approach, we found that galectin-3 induces phosphorylation of VEGF-R2 in endothelial cells. Knockdown of galectin-3 and Mgat5, an enzyme that synthesizes high-affinity glycan ligands of galectin-3, reduced VEGF-A mediated angiogenesis in vitro. A direct interaction on the plasma membrane was detected between galectin-3 and VEGF-R2, and this interaction was dependent on the expression of Mgat5. Using immunofluorescence and cell surface labeling, we found an increase in the level of internalized VEGF-R2 in both Mgat5 and galectin-3 knockdown cells, suggesting that galectin-3 retains the receptor on the plasma membrane. Finally, we observed reduced suture-induced neovascularization in the corneas of Gal3(-/-) and Mgat5(-/-) mice. These findings are consistent with the hypothesis that, like its role with the EGF and TGFβ receptors, galectin-3 contributes to the plasma membrane retention and proangiogenic function of VEGF-R2.  相似文献   

4.
5.
Lee M  Choy WC  Abid MR 《PloS one》2011,6(12):e28454

Background

ADPH oxidase-derived reactive oxygen species (ROS) play important roles in redox homeostasis and signal transduction in endothelial cells (ECs). We previously demonstrated that c-Src plays a key role in VEGF-induced, ROS-dependent selective activation of PI3K-Akt but not PLCγ-1-ERK1/2 signaling pathways. The aim of the present study was to understand how VEGFR-2-c-Src signaling axis ‘senses’ NADPH oxidase-derived ROS levels and couples VEGF activation of c-Src to the redox state of ECs.

Methodology/Principal Findings

Using biotinylated probe that detects oxidation of cysteine thiol (cys-OH) in intracellular proteins, we demonstrate that VEGF induced oxidative modification in c-Src and VEGFR-2, and that reduction in ROS levels using siRNA against p47phox subunit of Rac1-dependent NADPH oxidase inhibited this phenomenon. Co-immunoprecipitation studies using human coronary artery ECs (HCAEC) showed that VEGF-induced ROS-dependent interaction between VEGFR-2 and c-Src correlated with their thiol oxidation status. Immunofluorescence studies using antibodies against internalized VEGFR-2 and c-Src demonstrated that VEGF-induced subcellular co-localization of these tyrosine kinases were also dependent on NADPH oxidsase-derived ROS.

Conclusion/Significance

These results demonstrate that VEGF induces cysteine oxidation in VEGFR-2 and c-Src in an NADPH oxidase-derived ROS-dependent manner, suggesting that VEGFR-2 and c-Src can ‘sense’ redox levels in ECs. The data also suggest that thiol oxidation status of VEGFR-2 and c-Src correlates with their ability to physically interact with each other and c-Src activation. Taken together, these findings suggest that prior to activating downstream c-Src-PI3K-Akt signaling pathway, VEGFR-2-c-Src axis requires an NADPH oxidase-derived ROS threshold in ECs.  相似文献   

6.
The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEG FR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues forming a dense cluster in the kinase insert domain and at a single lysine located in the receptor activation loop. These modifications are under dynamic control of the acetyltransferase p300 and two deacetyiases HDAC5 and HDAC6. We demonstrate that VEGFR2 acetylation essentially regulates receptor phosphorylation. In par- ticular, VEGFR2 acetylation significantly alters the kinetics of receptor phosphorylation after ligand binding, allowing receptor phos- phoryiation and intraceUular signaling upon proLonged stimulation with VEGF. Molecular dynamics simulations indicate that acetylation of the lysine in the activation loop contributes to the transition to an open active state, in which tyrosine phosphorylation is favored by better exposure of the kinase target residues. These findings indicate that post-translational modification by acetyiation is a critical mechanism that directLy affects VEGFR2 function.  相似文献   

7.
Interaction between integrin alphavbeta3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrin-mediated outside-in signals co-operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction between alphavbeta3 integrin and tyrosine kinase vascular endothelial growth factor receptor-2 (VEGFR-2) in human endothelial cells. We report that tyrosine-phosphorylated VEGFR-2 co-immunoprecipitated with beta3 integrin subunit, but not with beta1 or beta5, from cells stimulated with VEGF-A165. VEGFR-2 phosphorylation and mitogenicity induced by VEGF-A165 were enhanced in cells plated on the alphavbeta3 ligand, vitronectin, compared with cells plated on the alpha5beta1 ligand, fibronectin or the alpha2beta1 ligand, collagen. BV4 anti-beta3 integrin mAb, which does not interfere with endothelial cell adhesion to vitronectin, reduced (i) the tyrosine phosphorylation of VEGFR-2; (ii) the activation of downstream transductor phosphoinositide 3-OH kinase; and (iii) biological effects triggered by VEGF-A165. These results indicate a new role for alphavbeta3 integrin in the activation of an in vitro angiogenic program in endothelial cells. Besides being the most important survival system for nascent vessels by regulating cell adhesion to matrix, alphavbeta3 integrin participates in the full activation of VEGFR-2 triggered by VEGF-A, which is an important angiogenic inducer in tumors, inflammation and tissue regeneration.  相似文献   

8.
Vascular endothelial growth factor (VEGF)-A, a major regulator for angiogenesis, binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). These receptors regulate physiological as well as pathological angiogenesis. VEGFR2 has strong tyrosine kinase activity, and transduces the major signals for angiogenesis. However, unlike other representative tyrosine kinase receptors which use the Ras pathway, VEGFR2 mostly uses the Phospholipase-Cgamma-Protein kinase-C pathway to activate MAP-kinase and DNA synthesis. VEGFR2 is a direct signal transducer for pathological angiogenesis including cancer and diabetic retinopathy, thus, VEGFR2 itself and the signaling appear to be critical targets for the suppression of these diseases. VEGFR1 plays dual role, a negative role in angiogenesis in the embryo most likely by trapping VEGF-A, and a positive role in adulthood in a tyrosine kinase-dependent manner. VEGFR1 is expressed not only in endothelial cells but also in macrophage-lineage cells, and promotes tumor growth, metastasis, and inflammation. Furthermore, a soluble form of VEGFR1 was found to be present at abnormally high levels in the serum of preeclampsia patients, and induces proteinurea and renal dysfunction. Therefore, VEGFR1 is also an important target in the treatment of human diseases. Recently, the VEGFR2-specific ligand VEGF-E (Orf-VEGF) was extensively characterized. Interestingly, the activation of VEGFR2 via VEGF-E in vivo results in a strong angiogenic response in mice with minor side effects such as inflammation compared with VEGF-A, suggesting VEGF-E to be a novel material for pro-angiogenic therapy.  相似文献   

9.
Angiogenesis plays an important role in bone development and postnatal bone fracture repair. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) are primarily involved in angiogenesis. This study investigated the expression of VEGF isoforms, VEGFR-1, and VEGFR-2 during the osteoblastic differentiation of cultured human periosteal-derived cells. In addition, the effect of exogenous VEGF on the osteoblastic differentiation of cultured human periosteal-derived cells was also examined. The expression of the VEGF isoforms (VEGF121, VEGF165, VEGF189, and VEGF206), VEGFR-1, and VEGFR-2 was observed in the periosteal-derived cells. Administration of KRN633, a VEGFR-1 and VEGFR-2 inhibitor, decreased the alkaline phosphatase (ALP) activity during the osteoblastic differentiation of cultured human periosteal-derived cells. However, the administration of VEGFR2 Kinase Inhibitor IV, a VEGFR-2 inhibitor, did not affect the ALP activity. The addition of recombinant human VEGF165 elevated the ALP activity and increased the calcium content in the periosteal-derived cells. Treating the periosteal-derived cells with recombinant human VEGF165 resulted in an increase in Runx2 transactivation in the periosteal-derived cells. These results suggest that exogenous VEGF stimulates the osteoblastic differentiation of cultured human periosteal-derived cells and VEGF might act as an autocrine growth factor for the osteoblastic differentiation of cultured human periosteal-derived cells.  相似文献   

10.
Vascular endothelial growth factor receptors (VEGFR) are considered essential for angiogenesis. The VEGFR-family proteins consist of VEGFR-1/Flt-1, VEGFR-2/KDR/Flk-1, and VEGFR-3/Flt-4. Among these, VEGFR-2 is thought to be principally responsible for angiogenesis. However, the precise role of VEGFRs1-3 in endothelial cell biology and angiogenesis remains unclear due in part to the lack of VEGFR-specific inhibitors. We used the newly described, highly selective anilinoquinazoline inhibitor of VEGFR-2 tyrosine kinase, ZM323881 (5-[[7-(benzyloxy) quinazolin-4-yl]amino]-4-fluoro-2-methylphenol), to explore the role of VEGFR-2 in endothelial cell function. Consistent with its reported effects on VEGFR-2 [IC(50) < 2 nM], ZM323881 inhibited activation of VEGFR-2, but not of VEGFR-1, epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), or hepatocyte growth factor (HGF) receptor. We studied the effects of VEGF on human aortic endothelial cells (HAECs), which express VEGFR-1 and VEGFR-2, but not VEGFR-3, in the absence or presence of ZM323881. Inhibition of VEGFR-2 blocked activation of extracellular regulated-kinase, p38, Akt, and endothelial nitric oxide synthetase (eNOS) by VEGF, but did not inhibit p38 activation by the VEGFR-1-specific ligand, placental growth factor (PIGF). Inhibition of VEGFR-2 also perturbed VEGF-induced membrane extension, cell migration, and tube formation by HAECs. Vascular endothelial growth factor receptor-2 inhibition also reversed VEGF-stimulated phosphorylation of CrkII and its Src homology 2 (SH2)-binding protein p130Cas, which are known to play a pivotal role in regulating endothelial cell migration. Inhibition of VEGFR-2 thus blocked all VEGF-induced endothelial cellular responses tested, supporting that the catalytic activity of VEGFR-2 is critical for VEGF signaling and/or that VEGFR-2 may function in a heterodimer with VEGFR-1 in human vascular endothelial cells.  相似文献   

11.
Proangiogenic, proliferative effects of tumors have been extensively characterized in subconfluent endothelial cells (EC), but results in confluent, contact-inhibited EC are critically lacking. The present study examined the effect of tumor-conditioned medium (CM) of the malignant osteoblastic cell line MG63 on monolayer, quiescent bovine aorta EC. MG63-CM and MG63-CM + CoCl2 significantly increased EC survival in serum-starved conditions, without inducing EC proliferation. Furthermore, MG63-CM and MG63-CM + CoCl2, both containing high amounts of vascular endothelial growth factor (VEGF), induced relevant phenotypic changes in EC (all P < 0.01) involving increase of nucleoli/chromatin condensations, nucleus-to-cytosol ratio, capillary-like vacuolated structures, vessel-like acellular areas, migration through Matrigel, growth advantage in reseeding, and factor VIII content. All these actions were significantly inhibited by VEGF and VEGF receptor (VEGFR2) blockade. Of particular importance, a set of similar effects were detected in a human microvascular endothelial cell line (HMEC). With regard to gene expression, incubation with MG63-CM abolished endogenous VEGF mRNA and protein but induced a clear-cut increase in VEGFR2 mRNA expression in EC. In terms of mechanism, MG63-CM activates protein kinase B (PKB)/Akt, p44/p42-mitogen-activated protein kinase (MAPK)-mediated pathways, as suggested by both inhibition and phosphorylation experiments. In conclusion, tumor cells activate confluent, quiescent EC, promoting survival, phenotypic, and gene expression changes. Of importance, VEGF antagonism converts MG63-CM from protective to EC-damaging effects. vascular endothelial growth factor receptor 2; MG63-conditioned medium  相似文献   

12.
Myoferlin and dysferlin are members of the ferlin family of membrane proteins. Recent studies have shown that mutation or genetic disruption of myoferlin or dysferlin promotes muscular dystrophy-related phenotypes in mice, which are the result of impaired plasma membrane integrity. However, no biological functions have been ascribed to myoferlin in non-muscle tissues. Herein, using a proteomic analysis of endothelial cell (EC) caveolae/lipid raft microdomains we identified myoferlin in these domains and show that myoferlin is highly expressed in ECs and vascular tissues. The loss of myoferlin results in lack of proliferation, migration, and nitric oxide (NO) release in response to vascular endothelial growth factor (VEGF). Western blotting and surface biotinylation experiments show that loss of myoferlin reduces the expression level and autophosphorylation of VEGF receptor-2 (VEGFR-2) in native ECs. In a reconstituted cell system, transfection of myoferlin increases VEGFR-2 membrane expression and autophosphorylation in response to VEGF. In vivo, VEGFR-2 levels and VEGF-induced permeability are impaired in myoferlin-deficient mice. Mechanistically, myoferlin forms a complex with dynamin-2 and VEGFR-2, which prevents CBL-dependent VEGFR-2 polyubiquitination and proteasomal degradation. These data are the first to report novel biological activities for myoferlin and reveal the role of membrane integrity to VEGF signaling.  相似文献   

13.
Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention.  相似文献   

14.
OBJECTIVE: To investigate expression patterns and relationship of vascular endothelial growth factor (VEGF), vascular endothelial receptor-3 (VEGF-R3) (FLT-4) and cyclooxygenase-2 (COX-2) in psoriasis. STUDY DESIGN: Forty-three patients were included in this study. The clinical severity of psoriasis was assessed using the psoriasis area and severity index (PASI). Punch biopsy samples both from psoriatic and nonlesional skin were taken and VEGF, VEGF-R3 and COX-2 expressions determined. RESULTS: VEGF, VEGF-R3 and COX-2 expressions were detected in 90.9%, 78.0% and 86.4% of psoriatic and 84.1%, 71.8%, and 84.1% of nonlesional skin, respectively. Epidermal VEGF, VEGF-R3 and COX-2 expressions were detected in 56.8%, 77.8% and 34.1 of psoriatic and 75%, 78.1% and 65.9% of nonlesional skin, respectively. In dermis, VEGF, VEGF-R3 and COX-2 expression was observed in 88.6%, 77.5% and 84.1% of psoriatic and 81.8%, 64.1% and 77.3% of nonlesional skin, respectively. Among the PASI subgroups no statistically significant differences were detected for VEGF, VEGF-R3 and COX-2 expression. CONCLUSION: Our study demonstrated that VEGF, VEGF-R3 and COX-2 expression in psoriatic and nonlesional skin is significantly high in epidermis and dermis. Although there was significant concordance between VEGF and VEGF-R3 expressions in psoriatic lesions, there seems to be no concordance between the others.  相似文献   

15.
Vascular endothelial growth factor (VEGF) is a major mediator of vasculogenesis and angiogenesis both during development and in pathological conditions. VEGF has a variety of effects on vascular endothelium, including the ability to stimulate endothelial cell mitogenesis, and the potent induction of vascular permeability. These activities are at least in part mediated by binding to two high affinity receptors, VEGFR-1 and VEGFR-2. In this study we have made mutations of mouse VEGF in order to define the regions that are required for VEGFR-2-mediated functions. Development of a bioassay, which responds only to signals generated by cross-linking of VEGFR-2, has allowed evaluation of these mutants for their ability to activate VEGFR-2. One mutant (VEGF0), which had amino acids 83-89 of VEGF substituted with the analogous region of the related placenta growth factor, demonstrated significantly reduced VEGFR-2 binding compared with wild type VEGF, indicating that this region was required for VEGF-VEGFR-2 interaction. Intriguingly, when this mutant was evaluated in a Miles assay for its ability to induce vascular permeability, no difference was found when compared with wild type VEGF. In addition we have shown that the VEGF homology domain of the structurally related growth factor VEGF-D is capable of binding to and activating VEGFR-2 but has no vascular permeability activity, indicating that VEGFR-2 binding does not correlate with permeability activity for all VEGF family members. These data suggest different mechanisms for VEGF-mediated mitogenesis and vascular permeability and raise the possibility of an alternative receptor mediating vascular permeability.  相似文献   

16.
Reactive oxygen species (ROS) mediate cell damage and have been implicated in the pathogenesis of diseases that involve endothelial injury. Cells possess antioxidant systems, including intracellular antioxidants and ROS scavenging enzymes, that control the redox state and prevent cell damage. In addition to intracellular antioxidants, certain growth factor receptors can be activated under oxidative stress and trigger downstream cell survival signaling cascades. Vascular endothelial growth factor receptor-3 (VEGFR-3) is a primary modulator of lymphatic endothelial proliferation and survival. Here, we provide evidence that activation of VEGFR-3 signaling in response to hydrogen peroxide (H(2)O(2)) promotes endothelial cell survival. Treatment with H(2)O(2) induced the tyrosine phosphorylation of VEGFR-3 and its association with the signaling adaptor proteins Shc, growth factor receptor binding protein 2, Sos, p85, SHP-2, and phospholipase C-gamma. Of note, a hereditary lymphoedema-linked mutant of VEGFR-3 was not phosphorylated by H(2)O(2) treatment. Isoforms of protein kinase C (PKC), alpha and delta, were also tyrosine-phosphorylated after H(2)O(2) stimulation. However, only the delta isoform of PKC was required for H(2)O(2)-induced phosphorylation of VEGFR-3. The tyrosine phosphorylation of VEGFR-3 or isoforms of PKC was completely inhibited by treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, a specific inhibitor for Src family kinases, indicating that Src family kinases are upstream of PKC and VEGFR-3. Furthermore, expression of the wild-type but not the lymphoedema-linked mutant form of VEGFR-3 in porcine artery endothelial cells significantly enhanced the activation of Akt after H(2)O(2) stimulation. Consistent with these biochemical changes, we observed that expression and activation of the wild-type but not the mutant form of VEGFR-3 inhibited H(2)O(2)-induced apoptosis. These studies suggest that VEGFR-3 protects against oxidative damage in endothelial cells, and that patients with hereditary lymphoedema may be susceptible to ROS-induced cell damage.  相似文献   

17.
Vascular endothelial growth factor (VEGF) and its receptors play an essential role in the formation and maintenance of the hematopoietic and vascular compartments. The VEGF receptor-2 (VEGFR-2) is expressed on a population of hematopoietic cells, although its role in hematopoiesis is still unclear. In this report, we have utilized a strategy to selectively activate VEGFR-2 and study its effects in primary bone marrow cells. We found that VEGFR-2 can maintain the hematopoietic progenitor population in mouse bone marrow cultured in the absence of exogenous cytokines. Maintenance of the hematopoietic progenitor population is due to increased cell survival with minimal effect on proliferation. Progenitor survival is mainly mediated by activation of the phosphatidylinositol 3'-kinase/Akt pathway. Although VEGFR-2 also activated Erk1/2 mitogen-activated protein kinase, it did not induce cell proliferation, and blockade of this pathway only partially decreased VEGFR-2-mediated survival of hematopoietic progenitors. Thus, the role of VEGFR-2 in hematopoiesis is likely to maintain survival of hematopoietic progenitors through the activation of antiapoptotic pathways.  相似文献   

18.
VEGFR-3 is essential for vascular development and maintenance of lymphatic vessel's integrity. Little is known about its cooperative effect with other receptors of the same family. Contrary to VEGFR-2, stimulation of VEGFR-3 by VEGF-C and -D failed to enhance its phosphorylation either in HEK293T or in PAE cells. These ligands were unable to induce angiogenesis of PAEC expressing VEGFR-3 alone. In the presence of VEGFR-2, VEGF-C and -D induced heterodimerization of VEGFR-3 with VEGFR-2. This heterodimerization was associated with enhanced VEGFR-3 phosphorylation and subsequent cellular responses as evidenced by the formation of capillary-like structures in PAE cells and proliferation of primary human endothelial cells expressing both receptors. Taken together, these results show for the first time that VEGFR-3 needs to be associated to VEGFR-2 to induce ligand-dependent cellular responses.  相似文献   

19.
Vascular endothelial growth factor is an angiogenic factor in vivo and in vitro that plays a crucial role in the control of blood vessel development and in pathological angiogenesis. The vascularized extraembryonic membranes of the chick embryo include the area vasculosa and the chorioallantoic membrane. In this study, we investigated the expression of vascular endothelial growth factor and of its receptor-2, specifically expressed by the endothelial cells, in the chick area vasculosa at days 6, 10 and 14 of incubation. Our results indicate that, in all the three developmental stages examined, vascular endothelial growth factor is clearly expressed in the endodermal cells immediately adjacent to the mesodermal endothelial cells which, in turn, expressed vascular endothelial growth factor receptor-2. These observations suggest that during the development of the vascular system, endodermal cells, expressing vascular endothelial growth factor, initiate angiogenesis by stimulating directly mesodermal cells, which express vascular endothelial growth factor receptor-2. Moreover, our data demonstrate that vascular endothelial growth factor receptor-2 expression is also maintained by endothelial cells in the later stages of development, until day 14 of incubation. In accord with other literature data, this suggests that vascular endothelial growth factor is required not only for proliferation, but also for the survival of endothelial cells.  相似文献   

20.
The C-terminal region of parathyroid hormone-related protein (PTHrP) containing the sequence (107–111) appears to be a potent inhibitor of osteoclastic bone resorption. In the present study, we have investigated the effect of human (h)PTHrP (107–139) and hPTHrP (107–111)NH2 on the proliferation of osteoblastic rat osteosarcoma UMR 106 cells. We found that both C-terminal PTHrP peptides, like hPTHrP (1–141), were antimitogenic for these cells, between 1 pM and 10 nM. [Tyr34]hPTHrP (1–34)NH2 was as potent as these peptides but less effective as growth inhibitor in these cells. UMR 106 cells were found to produce and secrete immunoreactive PTHrP. Addition of anti-PTHrP neutralizing antibodies to C- and N-terminal epitopes of PTHrP increased the growth of these cells. Our data suggest that the antiproliferative effect of these C-terminal PTHrP analogs may be independent of cyclic adenosine 3′:5′-monophosphate (cAMP) and mediated by protein kinase C. These findings support an autocrine role of PTHrP in bone metabolism. J. Cell. Physiol. 170:209–215, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号