共查询到20条相似文献,搜索用时 15 毫秒
1.
We observed previously that each of seven cancer progression inhibitors suppresses the mRNA expression of some matrix metalloproteinases (MMPs), but stimulates that of others, in breast cancer cells. In the present study we tested the effect of overexpressing other cancer modulators on MMP expression. The MMPs tested are MMP1, MMP2, MMP7, MMP13, MMP14, MMP16, MMP19, and MMP25. The proteins that were overexpressed are cancer inhibitors (NME, DRG1, IL10), enhancers (SOD2, FAK, IL17, and CREB), and proteins that suppress cancer progression in cells of some cancers and promote it in others (FUT1, integrin beta3, serpin E1, TIAM1, and claudin 4). Unexpectedly, all of them only lowered MMP mRNA expression, mainly of MMP16, MMP2, and MMP13, in breast cancer cells. Signaling from SOD2 uncoupled the accumulation of two MMP16 mRNA splice variants, suggesting signaling to a late step in MMP16 mRNA accumulation, such as MMP16 mRNA stabilization or late mRNA processing. Signaling that modulates MMP expression differed widely among the total population of MDA-MB-231 cells and single-cell progenies cloned from that population. It also differed substantially between cells of two metastatic breast basal adenocarcinomas, MDA-MB-231 and MDA-MB-468. The present study detected 37 new signaling pathways from cancer progression modulators located upstream of MMP mRNA expression in human breast cancer cells. Our siRNA-induced MMP knockdown data support the interpretation that signaling from MMP19, MMP1, MMP7, MMP12, MMP14, and MMP11 each stimulates the mRNA expression of other MMPs in breast cancer cells. 相似文献
2.
Croci DO Cogno IS Vittar NB Salvatierra E Trajtenberg F Podhajcer OL Osinaga E Rabinovich GA Rivarola VA 《Journal of cellular biochemistry》2008,105(2):381-390
Survivin is recognized as an attractive target in cancer therapy because of its selective overexpression in the majority of tumors. Upregulated expression of this protein correlates with increased tumor grade, recurrence risk and decreased cancer patients survival. In this study, we assessed the efficacy of two survivin-specific small interfering RNA (siRNA) constructs to inhibit T47D human breast cancer cell growth. After siRNA transfection, T47D cells showed a significant reduction in proliferation and survival exhibiting clear signs of apoptosis. pSil_1 that targeted exon 1 exhibited a stronger inhibitory effect on cell growth, and increased cell apoptosis compared to pSil_30 that targeted exon 4. Cell apoptosis was found to be mediated by translocation of the mitochondrial apoptosis inducing factor (AIF), while no changes were observed in caspase-3 activation and Bid cleavage. Thus, silencing survivin expression using siRNA strategies represents a suitable therapeutic approach to selectively modulate the survival and growth of human breast cancer cells. 相似文献
3.
4.
EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer 总被引:17,自引:0,他引:17
Hughes-Davies L Huntsman D Ruas M Fuks F Bye J Chin SF Milner J Brown LA Hsu F Gilks B Nielsen T Schulzer M Chia S Ragaz J Cahn A Linger L Ozdag H Cattaneo E Jordanova ES Schuuring E Yu DS Venkitaraman A Ponder B Doherty A Aparicio S Bentley D Theillet C Ponting CP Caldas C Kouzarides T 《Cell》2003,115(5):523-535
5.
6.
Jiang Ge Sang-Hyun Min Dong Min Kim Dong Chul Lee Kyung Chan Park Young Il Yeom 《Biotechnology and Bioprocess Engineering》2012,17(1):160-167
We developed a gene delivery strategy targeting metastatic tumors by exploiting the specific matrix metalloproteinases (MMPs)
secreting properties of metastatic tumor cells. A ternary polyplex has been formed by coating polyethylenimine/DNA (PD) complex
with an excessive amount of negatively charged gelatin B (GPDB). We show that GPD-B’s gene delivery activity could be targeted
to cancer cells via the MMP-mediated proteolytic process, while GPD-A, made from positively charged gelatin A, was not successful in exhibiting
such activity. The 1,10-Phenanthroline, an MMP2 inhibitor, abrogated the MMP-dependent transfection activity of GPD-B. GPD-B
carried much less positive surface charges than PD, and thus exhibited significantly reduced interactions with erythrocytes.
However, MMP2 elevated the positiveness in GPDB’s surface charge and, thus, its interaction with erythrocytes. These results
suggest that the anionic gelatin coating may confer improved stabilities on GPD-B in the surrounding medium, while MMP2-mediated
disintegration of the gelatin coat enhances the gene delivery to metastatic cancer cells via increasing the likelihood of local chargemediated interactions between the polyplex and cancer cell membrane. 相似文献
7.
《Cell cycle (Georgetown, Tex.)》2013,12(21):3562-3570
Tetraiodothyroacetic acid (tetrac) inhibits the cellular actions of thyroid hormone initiated at the hormone receptor on plasma membrane integrin αvβ3. Via interaction with the integrin, tetrac is also capable of inhibiting the angiogenic effects of vascular endothelial growth factor and basic fibroblast growth factor. MDA-MB-231 cells are estrogen receptor-negative human breast cancer cells shown to be responsive to tetrac in terms of decreased cell proliferation. Here we describe actions initiated at the cell surface receptor by unmodified tetrac and nanoparticulate tetrac on a panel of survival pathway genes in estrogen receptor-negative human breast cancer (MDA-MB-231) cells. Nanoparticulate tetrac is excluded from the cell interior. Expression of apoptosis inhibitors XIAP (X-linked inhibitor of apoptosis) and MCL1 (myeloid cell leukemia sequence 1) was downregulated by nanoparticulate tetrac in these breast cancer cells whereas apoptosis-promoting CASP2 and BCL2L14 were upregulated by the nanoparticulate formulation. Unmodified tetrac affected only XIAP expression. Expression of the angiogenesis inhibitor thrombospondin 1 (THBS1) gene was increased by both formulations of tetrac, as was the expression of CBY1, a nuclear inhibitor of catenin activity. The majority of differentially regulated Ras-oncogene family members were downregulated by nanoparticulate tetrac. The latter downregulated expression of epidermal growth factor receptor gene and unmodified tetrac did not. Nanoparticulate tetrac has coherent anti-cancer actions on expression of differentially-regulated genes important to survival of MDA-MB-231 cells. 相似文献
8.
9.
Several lines of evidence speak for an important role of matrix metalloproteinases (MMPs) in the development of progressive
joint destruction. To better understand the role of MMPs and their tissue inhibitors (TIMPs) in this process, we have used
the antigen-induced arthritis model to study the temporospatial expression of several MMPs and TIMPs during the progression
of arthritis. Arthritis was induced by a single intra-articular injection of methylated bovine serum albumin (mBSA) into one
or both knee joints of adult mice previously immunised against mBSA. Samples were collected at 3, 7, 21 and 42 days after
induction of arthritis for histology and RNA extraction, and analysed by Northern hybridisation, histochemistry and immunohistochemistry
for production of several MMPs and TIMPs −1, −2 and −3. A systematic analysis of MMP and TIMP mRNA levels in mouse knee joints
demonstrated a general upregulation of both MMPs and TIMPs during progression of arthritis. Upregulation of MMP-9, −13 and
−14 coincided with the advancement of cartilage degeneration, but the expression patterns of MMP-9 and −13 also followed the
course of synovial inflammation. TIMPs were steadily upregulated throughout the examination period. Immunohistochemical localisation
of MMPs and TIMPs suggested the synovium to be the major source of MMP and TIMP production in arthritis, although articular
cartilage chondrocytes also showed an increased production of both MMPs and TIMPs. 相似文献
10.
11.
Vijayababu MR Arunkumar A Kanagaraj P Venkataraman P Krishnamoorthy G Arunakaran J 《Molecular and cellular biochemistry》2006,287(1-2):109-116
Background: Cancer metastasis, involving multiple processes and various cytophysiological changes, is a primary cause of cancer death and may complicate the clinical management, even lead to death. Quercetin is a flavonoid and widely used as an antioxidant and recent studies have revealed its pleiotropic anticancer and antiproliferative capabilities. Gelatinases A and B (matrixmetalloproteinases 2 and 9) are enzymes known to involve in tumor invasion and metastases. In this study, we observed the precise involvement of quercetin role on these proteinases expression and activity. Design and methods: PC-3 cells were treated with quercetin at various concentrations (50 and 100 μM), for 24 h period and then subjected to western blot analysis to investigate the impact of quercetin on matrix metalloproteinase-2 (MMP-2) and 9 (MMP-9) expressions. Conditioned medium and cell lysate of quercetin-treated PC-3 cells were subjected to western blot analysis for proteins expression of MMP-2 and MMP-9. Gelatin zymography was also performed in quercetin treated PC-3 cells. Results: The results showed that quercetin treatment decreased the expressions of MMP-2 and MMP-9 in dose-dependent manner. The level of pro-MMP-9 was found to be high in the 100 μM quercetin-treated cell lysate of PC-3 cells, suggesting inhibitory role of quercetin on pro-MMP-9 activation. Gelatin zymography study also showed the decreased activities of MMP-2 and MMP-9 in quercetin treated cells. Conclusion: Hence, we speculated that inhibition of metastasis-specific MMPs in cancer cells may be one of the targets for anticancer function of quercetin, and thus provides the molecular basis for the development of quercetin as a novel chemopreventive agent for metastatic prostate cancer. 相似文献
12.
13.
14.
15.
LU Aiping LI Qing LIU Jingwen . Department of Pathology Peking University School of Oncology Beijing Cancer Hospital Beijing China . VA Palo alto Health Care System Palo Alto California CA USA 《中国科学:生命科学英文版》2006,49(4):403-408
Breast cancer specific gene 1, also referred as synu-clein γ, was originally isolated from a human breasttumor cDNA library[1]. It reveals extensive sequencehomology to a family of neuronal cytosolic proteins,synuclein α and synuclein β[2,3]. Synuclein… 相似文献
16.
17.
Nicotine treatment induces expression of matrix metalloproteinases in human osteoblastic Saos-2 cells 总被引:1,自引:1,他引:1
Katono T Kawato T Tanabe N Suzuki N Yamanaka K Oka H Motohashi M Maeno M 《Acta biochimica et biophysica Sinica》2006,38(12):874-882
Tobacco smoking is an important risk factor for the development of severe periodontitis.Recently,we showed that nicotine affected mineralized nodule formation,and that nicotine andlipopolysaccharide stimulated the formation of osteoclast-like cells by increasing production of macrophagecolony-stimulating factor (M-CSF) and prostaglandin E_2 (PGE_2) by human osteoblastic Saos-2 cells.In thepresent study,we examined the effects of nicotine on the expression of matrix metalloproteinases (MMPs),tissue inhibitors of matrix metalloproteinases (TIMPs),the plasminogen activation system including thecomponent of tissue-type plasminogen activator (tPA),urokinase-type PA (uPA),and PA inhibitor type 1(PAI-1),α7 nicotine receptor,and c-fos.We also examined the effect of the nicotine antagonist D-tubocurarineon nicotine-induced expression of MMP-1.Gene expression was examined using real-time polymerase chainreaction (PCR) to estimate mRNA levels.In addition,expression of the MMP,TIMP,uPA,tPA,and PAI-1proteins was determined by Western blotting analysis.Nicotine treatment caused expression of MMP-1,2,3,and 13,but not MMP-14,to increase significantly after 5 or 10 d of culture;MMP-14 expression did notchange through day 14.Enhancement of MMP-1 expression by nicotine treatment was eliminated bysimultaneous treatment with D-tubocurarine.In the presence of nicotine,expression of uPA,PAI-1,orTIMP-1,2,3,or 4 did not change over 14 d of culture,whereas expression of tPA increased significantly byday 7.Nicotine also increased expression of the α7 nicotine receptor and c-fos genes.These results suggestthat nicotine stimulates bone matrix turnover by increasing production of tPA and MMP-1,2,3,and 13,thereby tipping the balance between bone matrix formation and resorption toward the latter process. 相似文献
18.
Nearly 70% of breast cancer patients with advanced disease will develop bone metastases. Once established in bone, tumor cells produce factors that cause changes in normal bone remodeling, such as parathyroid hormone-related protein (PTHrP). While enhanced expression of PTHrP is known to stimulate osteoclasts to resorb bone, the environmental factors driving tumor cells to express PTHrP in the early stages of development of metastatic bone disease are unknown. In this study, we have shown that tumor cells known to metastasize to bone respond to 2D substrates with rigidities comparable to that of the bone microenvironment by increasing expression and production of PTHrP. The cellular response is regulated by Rho-dependent actomyosin contractility mediated by TGF-ß signaling. Inhibition of Rho-associated kinase (ROCK) using both pharmacological and genetic approaches decreased PTHrP expression. Furthermore, cells expressing a dominant negative form of the TGF-ß receptor did not respond to substrate rigidity, and inhibition of ROCK decreased PTHrP expression induced by exogenous TGF-ß. These observations suggest a role for the differential rigidity of the mineralized bone microenvironment in early stages of tumor-induced osteolysis, which is especially important in metastatic cancer since many cancers (such as those of the breast and lung) preferentially metastasize to bone. 相似文献
19.
Chenfu Zhao Lu Meng Hongyu Hu Xudong Wang Fangyu Shi Yajuan Wang Qianqian Li Aixing Lin 《BMC cell biology》2010,11(1):82