首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability of a myeloid leukemia cell line (HL-60) to undergo membrane electrical potential changes was followed during neutrophilic differentiation induced by 2 compounds. Membrane-potential changes were induced with 12-O-tetradecanoylphorbol 13-acetate (TPA) or formyl-methionyl-leucyl-phenylalanine (FMLP) and were monitored by flow cytometry. The magnitude of the membrane-potential response to TPA increased in a more uniform manner as the population of cells matured than did acquisition of mature morphology or ability to undergo the respiratory burst in response to TPA. The response to TPA and FMLP of HL-60 cells, maximally induced to differentiate by dimethylsulfoxide, closely resembled that of neutrophils. Thus, HL-60 cells may be a useful tool in the study of the relation between membrane depolarization and subsequent cellular activation.  相似文献   

2.
LKB1 is a 50 kDa serine/threonine kinase that phosphorylates and activates the catalytic subunit of AMPK at its T-loop residue Thr 172. We prepared adenoviruses expressing the constitutive active (wild-type) form (CA) or dominant negative (kinase inactive, D194A mutant) form (DN) of LKB1 and overexpressed these proteins in cultured myotubes (C2C12 cells) and rat hepatoma cells (FAO cells). When analyzed by immunoblotting with the antibody against Thr172-phosphorylated AMPK, the phosphorylation of AMPK was increased (2.5-fold) and decreased (0.4-fold) in cells expressing CA and DN LKB1, respectively, as compared with Lac-Z expressing control cells. Immunoprecipitation experiments, using isoform-specific antibody, revealed these alterations of AMPK phosphorylation to be attributable to altered phosphorylation of AMPK alpha2, but not alpha1 catalytic subunits, strongly suggesting the alpha2 catalytic subunit to be the major substrate for LKB1 in mammalian cells. In addition, adiponectin or AICAR-stimulated AMPK phosphorylation was inhibited by overexpression of DN LKB1, while phenformin-stimulated phosphorylation was unaffected. These results may explain the difference in AMPK activation mechanisms between AMP and phenformin, and also indicate that AMPK phosphorylation by LKB1 is involved in AMP-stimulated AMPK activation. As a downstream target for AMPK, AICAR-induced glucose uptake and ACCbeta phosphorylation were found to be significantly reduced in DN LKB1 expressing C2C12 cells. The expression of key enzymes for gluconeogenesis, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, was also dependent on LKB1 activities in FAO cells. These results demonstrate that LKB1 is a crucial regulator of AMPK activation in muscle and liver cells and, therefore, that LKB1 activity is potentially of importance to our understanding of glucose and lipid metabolism.  相似文献   

3.
The new potent tumor promoters teleocidin and debromoaplysiatoxin , which are structurally unrelated to phorbol esters, activate Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C). The concentrations of 12-O-tetradecanoylphorbol-13-acetate, teleocidin and debromoaplysiatoxin for half-maximum activation of protein kinase C were found to be approximately 3 ng/ml, 40 ng/ml and 400 ng/ml, respectively. These three types of tumor promoters bind to protein kinase C, and appear to exhibit their pleiotropic actions through activation of this enzyme.  相似文献   

4.
ABSTRACT

12-O-tetradecanoylphorbol-13-acetate (TPA), is a major active constituent of the seed oil of Croton tiglium L., has pharmacological activity for the treatment of acute myeloid leukemia patients. Diethyldithiocarbamate (DTC) is a potent inhibitor of NF-κB show activity of anticancer. In this study, we determined the effect of DTC and TPA in combination on HL-60 cells cultured in vitro and in vivo. In this study, we have shown that DTC and TPA synergistically inhibited the growth of HL-60 cells and strongly induced apoptosis in the cells. Mechanistic studies showed that the combined effects of DTC and TPA were associated with a decrease in Bcl-2. The animal experiment showed that the combination of DTC and TPA more potently inhibited the growth of HL-60 tumors than either agent alone. Our results indicate that the administration of TPA and DTC in combination may be an effective strategy for inhibiting the growth of acute myeloid leukemia cells.  相似文献   

5.
1. Using internal perfusion and concentration-clamp procedures applied to Helix neurons, the effects of cAMP, Ca2+, and phorbol esters on ouabain-induced depression of acetylcholine Cl-dependent responses were determined. 2. Intracellular cAMP (10(-4) M) depressed those acetylcholine responses which were blocked by ouabain but had no effect on ouabain-insensitive acetylcholine responses. In the presence of elevated intracellular cAMP, ouabain had no further depressant effect on these acetylcholine responses. Both elevated cAMP and ouabain reduced the acetylcholine response without altering the current-voltage curves. 3. An increase in intracellular Ca2+ concentration depressed the amplitude of current induced by application of acetylcholine in neurons with ouabain-sensitive responses and shifted the dose-response relationship to the right. However, elevated Ca2+ did not reduce the maximal response induced by acetylcholine, nor did it prevent the reduction of that response by ouabain. 4. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a potent stimulator of protein kinase C activity, caused depression of both the ouabain-sensitive and the ouabain-insensitive acetylcholine responses. The inhibitory effect of TPA was markedly enhanced after addition of ATP to the intracellular medium and was greatly reduced by cooling to 5 degrees C. The blocking effect of ouabain, however, reexamined in the presence of TPA. 5. These observations are consistent with the hypothesis that the depression of acetylcholine induced Cl--responses in Helix neurons is a result of an increase in intracellular cAMP concentration but is unrelated to activation of protein kinase C or increases in intracellular Ca2+.  相似文献   

6.
The mechanism by which lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) induces production of proinflammatory cytokines in murine macrophages, and the role of phosphatidylinositol 3-kinase (PI3-kinase) have not been well investigated. Activation of nuclear factor κB (NF-κB) is initiated by the phosphorylation of the inhibitory subunit, IκB, which targets IκB for degradation and leads to the release of active NF-κB. In this study we demonstrate that 2- (4-morpholinyl)-8-phenylchromone (LY294002), which inhibits PI3-kinase, specifically inhibited degradation of IκBα in RAW264.7 cells stimulated with interferon-γ (IFN-γ) plus LPS or IFN-γ plus PMA. To elucidate the importance of this activity in RAW264.7 cells, we examined tumor necrosis factor-α (TNF-α) and interleukin IL)-6 production in the activated cells. Pretreatment of the cells with LY294002 resulted in the inhibition of TNF-α and IL-6 production in RAW264.7 cells stimulated with IFN-γ plus LPS or IFN-γ plus PMA. Furthermore, LY294002 inhibited the production of nitric oxide NO) in RAW264.7 cells stimulated with IFN-γ plus LPS or IFN-γ plus PMA. LY294002 also inhibited inducible NO synthase (iNOS) mRNA expression in the activated RAW264.7 cells. In conclusion, the present results suggest that PI3-kinase is involved in the signal transduction pathway responsible for LPS- or PMA-mediated TNF-α and IL-6 production, and that LY294002 inhibits NO generation through blocking the degradation of IκBα in activated RAW264.7 cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
8.
Gopee NV  Sharma RP 《Life sciences》2004,74(12):1541-1559
Fumonisin B1 (FB1), a potent and naturally occurring mycotoxin produced by the fungus Fusarium verticillioides, has been implicated in fatal and debilitating diseases in animals and humans. FB1 affects a variety of cell signaling proteins including protein kinase C (PKC); a serine/threonine kinase, involved in a number of signal transduction pathways that include cytokine induction, carcinogenesis and apoptosis. The aim of this study was to investigate the short-term temporal and concentration-dependent effects of FB1 on PKC isoforms present in LLC-PK1 cells in relation to the FB1-induced accumulation of sphinganine and sphingosine utilizing various inhibitors and activators. Our studies demonstrated that FB1 (0.1-1 μM) selectively and transiently activated PKCα at 5 min, without affecting PKC-δ, -ε and -ζ isoforms. At higher FB1 concentrations and later time points (15-120 min), PKCα membrane concentrations declined to untreated levels. The observed increase in cytosol PKCα protein expression at 15 min was not associated with an increase in its activity or protein biosynthesis. Calphostin C, a PKC inhibitor, abrogated the FB1-induced translocation of PKCα. Pre-incubation with the PKC activator, phorbol 12-myristate 13-acetate, resulted in an additive effect on membrane translocation of PKCα. Intracellular sphinganine and sphingosine concentrations were unaltered at the time points tested. Myriocin, a specific inhibitor of serine palmitoyltransferase, the first enzyme in de novo sphingolipid biosynthesis, did not prevent the FB1-induced PKCα cytosol to membrane redistribution. Altering PKCα and its signal transduction pathways may be of importance in the ability of FB1 to exert its toxicity via apoptosis and/or carcinogenesis.  相似文献   

9.
Serotonin and histamine H1, H2 receptor agonists or antagonists inhibited [3H]histamine uptake by HL-60 cells, according to the following order of potency: impromidine >4-MH>histamine>AET>PEA and: cimetidine, histamine>diphenhydramine, serotonin. It is concluded that histamine uptake by HL-60 cells was specifically controlled by the H2 type histamine receptor and that this active process might be involved in pathophysiological regulations in leukemic and normal granulocytic precursors and in the control of histamine levels in peripheral blood and tissues in man.  相似文献   

10.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

11.
In order to obtain information on the disputed nature of melanosomes a comparison was made between the localization of melanosomal markers with those of other well-defined subcellular organelles such as lysosomes and peroxisomes. The distribution of marker enzymes was studied using two different density gradient systems. i.e., Percoll and Nycodenz. Furthermore, the subcellular localization of various types of antigens was analyzed using indirect immunofluorescence and immuno-electron microscopy. All methods revealed the existence of partial co-localization of melanosomal and lysosomal proteins and different localization of peroxisomal markers. The results suggest that melanosomes may share a common origin with lysosomal structures.  相似文献   

12.
13.
Cyclooxygenase-2 (COX-2) is inducible by myriad stimuli. The inducible COX-2 in primary cultured human cells has been reported to localize to nuclear envelope, endoplasmic reticulum, nucleus and caveolae. As COX-2 plays an important role in tumor growth, we were interested in its subcellular location in cancer cells. We examined COX-2 localization in several cancer cell lines by confocal microscopy. A majority of COX-2 was colocalized with heat shock protein 60, a mitochondrial protein, in colon cancer (HT-29, HCT-15 and DLD-1), breast cancer (MCF7), hepatocellular cancer (HepG2) and lung cancer cells (A549) with a similar distribution pattern. By contrast, COX-2 was not localized to mitochondria in human foreskin fibroblasts or endothelial cells. Immunoblot analysis of COX-2 in mitochondrial and cytosolic fractions confirmed localization of COX-2 to mitochondria in HT-29 and DLD-1 cells but not in fibroblasts. Calcium-independent phospholipase A2 was colocalized with heat shock protein 60 to mitochondria not only in cancer cells (HT-29 and DLD-1) but also in fibroblasts. HT-29 which expressed more abundant mitochondrial COX-2 than DLD-1 was highly resistant to arachidonic acid and H2O2-induced apoptosis whereas DLD-1 was less resistant and human fibroblasts were highly susceptible. Treatment of HT-29 cells with sulindac or SC-236, a selective COX-2 inhibitor, resulted in loss of resistance to apoptosis. These results suggest that mitochondrial COX-2 in cancer cells confer resistance to apoptosis by reducing the proapoptotic arachidonic acid.  相似文献   

14.
The effects of TPA and/or DDT and oleic acid and/or DDT on gap junction-mediated intercellular communication (i.e. metabolic cooperation) between Chinese hamster V79 cells was examined. Addition of TPA, DDT or oleic acid alone to cocultures of 6t-hioguanine-resistant (6-TG R ) and 6-thioguanine-sensitive (6-TG S ) V79 cells significantly increased the recovery of 6-TG R cells indicating inhibition of metabolic cooperation. In the presence of TPA and DDT or oleic acid and DDT the observed recovery of 6-TG R cells was significantly greater than the expected (calculated) additive 6-TG R cell recovery. No synergistic increases in 6-TG R cell recovery were observed when co-cultures of V79 cells were exposed to dieldrin and DDT. These results indicate that TPA and DDT or oleic acid and DDT can act synergistically to inhibit metabolic cooperation. These data suggest a role for protein kinase C in the regulation of gap junction-mediated intercellular communication.Abbreviations DDT dichlorodiphenyltrichlorethane - MC metabolic cooperation defective - 6-TG 6thioguanine - TPA 12-0-tetradecanoylphorbol-13-acetate  相似文献   

15.
The mechanism underlying beta,gamma-methylene ATP (beta,gamma-MeATP)-induced cAMP elevation was investigated in rat glioma C6Bu-1 cells. Beta,gamma-MeATP increased forskolin-stimulated cAMP formation in a manner sensitive to both the P1 antagonist xanthine amine congener (XAC) and the P2 antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Adenosine deaminase (ADA; 1 U/mL), which abolished the adenosine-induced response, did not eliminate the beta,gamma-MeATP-induced response. However, combination of ADA with alpha,beta-methylene ADP (alpha,beta-MeADP), an ecto-5'-nucleotidase inhibitor, blocked the beta,gamma-MeATP-induced response. AMP, the substrate for ecto-5'-nucleotidase, also induced cAMP formation in a manner sensitive to XAC and alpha,beta-MeADP inhibition. However, the AMP-induced response was not blocked by PPADS. HPLC analyses revealed that adenosine was generated from beta,gamma-MeATP and AMP. In addition, alpha,beta-MeADP inhibited the conversion of beta,gamma-MeATP and AMP to adenosine, whereas PPADS blocked adenosine formation from beta,gamma-MeATP but not from AMP. [3H]Adenosine generated from [3H]AMP was preserved on the cell surface environment even in the presence of ADA. The mRNAs for ecto-phosphodiesterase/pyrophosphatase 1 (EC 3.1.4.1), ecto-5'-nucleotidase (EC 3.1.3.5) and adenosine A2B receptor were detected by RT-PCR. These results suggest that C6Bu-1 cells possess ecto-enzymes converting beta,gamma-MeATP to adenosine, and the locally accumulated adenosine in this mechanism efficiently stimulates A2B receptors in a manner resistant to exogenous ADA.  相似文献   

16.
Changes in intracellular ion concentrations have been correlated with the activation of an endogenous endonuclease and thus internucleosomal DNA cleavage during apoptosis in many cell types. We investigated whether intracellular pH could play a significant role in apoptotic initiation and progression in C3H-10T1/2 cells, a cell strain that does not exhibit double-stranded DNA cleavage during apoptosis. Protein kinase C and the Na+/H+ antiporter, known regulators of intracellular pH, also were assessed for their involvement in apoptosis of C3H-10T1/2 cells. When a H+ ionophore was used to clamp intracellular pH to 6.0 or below, a significant level of apoptosis was induced in these cells within 6 h, whereas clamping at pH 6.75 did not induce significant amounts of apoptosis until 36 h after acidification. The acidified cells exhibited classic apoptotic morphology and chromatin condensation, similar to serum withdrawn cells, but failed to show internucleosomal DNA cleavage with electrophoresis of genomic DNA. Our results also suggest that the 12-O-tetradecanoylphorbol-13-acetate (TPA)-mediated inhibition of apoptosis in serum withdrawn C3H-10T1/2 cells functions through a sequential activation of protein kinase C and the Na+/H+ antiporter; thus, an alkalinization or an inhibition of acidification is involved in this apoptotic block. Serum withdrawal itself does not appear to act through a negative effect on either protein kinase C or the Na+/H+ antiporter. TPA was also capable of inhibiting the apoptosis induced by specific inhibitors of protein kinase C and the Na+/H+ antiporter, but the inhibition was successful only if the TPA was administered at least 20 min prior to the addition of the enzyme inhibitor. These results indicate that apoptosis in C3H-10T1/2 cells follows a pathway that involves intracellular acidification, but is independent of detectable endonuclease activity. J. Cell. Biochem. 67:231–240, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Gokoh M  Kishimoto S  Oka S  Metani Y  Sugiura T 《FEBS letters》2005,579(28):6473-6478
2-Arachidonoylglycerol (2-AG), an endogenous cannabionoid receptor (CB1 and CB2) ligand, enhanced the adhesion of HL-60 cells differentiated into macrophage-like cells to fibronectin and the vascular cell adhesion molecule-1. The CB2 receptor, Gi/Go, intracellular free Ca(2+) and phosphatidylinositol 3-kinase were shown to be involved in 2-AG-induced augmented cell adhesion. 2-AG also enhanced the adhesion of human monocytic leukemia U937 cells and peripheral blood monocytes. These results strongly suggest that 2-AG plays some essential role in inflammatory reactions and immune responses by inducing robust adhesion to extracellular matrix proteins and adhesion molecules in several types of inflammatory cells and immune-competent cells.  相似文献   

18.
Summary The evaluation of the intracellular signal train and its regulatory function in controlling transepithelial transport with electrophysiological methods often requires intracellular measurements with microelectrodes. However, multiple impalements in epithelial cells are hampered by the small size of the cells. In an attempt to avoid these problems we fused cells of an established cell line, Madin Darby canine kidney cells, originally derived from dog kidney, to giant cells by applying a modified polyethylene glycol method. During trypsin-induced detachment from the ground of the petri dish, individual cells grown in a monolayer incorporate volume and mainly lose basolateral plasma membrane by extrusion. By isovolumetric cell-to-cell fusion, spherical giant cells are formed within 2 hr. During this process a major part of the individual cell plasma membranes is internalized. Over three weeks following cell plasma membrane fusion degradation of single cell nuclei and cell nuclear fusion occurs. We conclude that this experimental approach opens the possibility to investigate ion transport of epithelia in culture by somatic cell genetic techniques.  相似文献   

19.
20.
Acute renal failure is a common finding in cocaine abusers. While cocaine metabolism may contribute to its nephrotoxic mechanisms, its pharmacokinetics in kidney cells is hitherto to be clarified. Primary cultures of human proximal tubular cells (HPTCs) provide a well-characterized in vitro model, phenotypically representative of HPTCs in vivo. Thus, the present work describes the first sensitive gas chromatography/ion trap-mass spectrometry (GC/IT-MS) method for measurement of cocaine and its metabolites benzoylecgonine (BE) and norcocaine (NCOC) using a primary culture of HPTCs as cellular matrix, following solid phase extraction (SPE) and derivatization with N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). The application of this methodology also enables the identification of two other cocaine metabolites: ecgonine methyl ester (EME) and anhydroecgonine methyl ester (AEME). The validation of the method was performed through the evaluation of selectivity, linearity, precision and accuracy, limit of detection (LOD), and limit of quantification (LOQ). Its applicability was demonstrated through the quantification of cocaine, BE and NCOC in primary cultured HPTCs after incubation, at physiological conditions, with 1 mM cocaine for 72 h. The developed GC/IT-MS method was found to be linear (r2 > 0.99). The intra-day precision varied between 3.6% and 13.5% and the values of accuracy between 92.7% and 111.9%. The LOD values for cocaine, BE and NCOC were 0.97±0.09, 0.40±0.04 and 20.89±1.81 ng/mL, respectively, and 3.24±0.30, 1.34±0.14 and 69.62±6.05 ng/mL as LOQ values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号