共查询到20条相似文献,搜索用时 31 毫秒
1.
Quartacci MF Glisić O Stevanović B Navari-Izzo F 《Journal of experimental botany》2002,53(378):2159-2166
Plants of Ramonda serbica were dehydrated to 3.6% relative water content (RWC) by withholding water for 3 weeks, afterwards the plants were rehydrated for 1 week to 93.8% RWC. Plasma membranes were isolated from leaves using a two-phase aqueous polymer partition system. Compared with well-hydrated (control) leaves, dehydrated leaves suffered a reduction of about 75% in their plasma membrane lipid content, which returned to the control level following rewatering. Also the lipid to protein ratio decreased after dehydration, almost regaining the initial value after rehydration. Lipids extracted from the plasma membrane of fully-hydrated leaves were characterized by a high level of free sterols and a much lower level of phospholipids. Smaller amounts of cerebrosides, acylated steryl glycosides and steryl glycosides were also detected. The main phospholipids of control leaves were phosphatidylcholine and phosphatidylethanolamine, whereas sitosterol was the free sterol present in the highest amount. Following dehydration, leaf plasma membrane lipids showed a constant level of free sterols and a reduction in phospholipids compared with the well-hydrated leaves. Both phosphatidylcholine and phosphatidylethanolamine decreased following dehydration, their molar ratio remaining unchanged. Among free sterols, the remarkably high cholesterol level present in the control leaves (about 14 mol%) increased 2-fold as a result of dehydration. Dehydration caused a general decrease in the unsaturation level of individual phospholipids and total lipids as well. Upon rehydration the lipid composition of leaf plasma membranes restored very quickly approaching the levels of well-hydrated leaves. 相似文献
2.
Bekim Gashi Fatbardha Babani Efigjeni Kongjika 《Physiology and Molecular Biology of Plants》2013,19(3):333-341
The desiccation-tolerant plants of the R. serbica and R. nathaliae are resurrection plants which are able to fully recover their physiological function after anabiosis. A comparison of chlorophyll fluorescence imaging and photosynthetic pigment contents responses of R. serbica and, for the first time, R. nathaliae to dehydration and rehydration were investigated. For this purpose, plants after collection from their natural habitats were kept fully watered for 14 days at natural condition. The experiment was conducted with mature leaves of both species. R. serbica and R. nathaliae plants were dehydrated to 5.88 % and 7.87 % relative water content (RWC) by withholding water for 15 days, afterwards the plants were rehydrated for 72 hours to 94.67 % and 97.02 % RWC. During desiccation, R. serbica plants preserved the chlorophyll content about 84 %, while R. nathaliae about 90 %. During dehydration when RWC were more than 40 %, photochemical efficiency of PSII for photochemistry, the Fv/Fm ratio, decreased about 40 % in R. nathaliae plants, but a strong reduction with 60 % was recorded for R. serbica. Following rehydration, the Fv/Fm ratio recovered more rapidly in R. nathaliae. The higher photosynthetic rates could also be detected via imaging the chlorophyll fluorescence decrease ratio Rfd, which possessed higher values after rehydration leaves of R. nathaliae as compared to R. serbica. The results showed that the photosynthetic activity and chlorophyll contents after rehydration are recovered more rapidly in R. nathaliae in comparison to R. serbica. 相似文献
3.
Augusti A Scartazza A Navari-Izzo F Sgherri CL Stevanovic B Brugnoli E 《Photosynthesis research》2001,67(1-2):79-88
Changes in photochemical efficiency, non-radiative energy dissipation (NRD), de-epoxidation state of xanthophyll cycle components (DPS) and contents of the antioxidants ascorbic acid and glutathione were studied in leaves of the poikilohydric Ramonda serbica Panc. (Gesneriaceae) during cycles of dehydration and subsequent rehydration. In drying leaves, the intrinsic efficiency of PS II photochemistry and the photon yield of PS II electron transport showed strong progressive decreases. Simultaneously, the fraction of excitation energy dissipated as heat in the PS II antenna increased markedly. The energy-dependent component of non-photochemical quenching (NPQ) showed an increase in dehydrating leaves down to relative water contents (RWC) values near 30%. Further decreases in RWC below these values caused a decrease in NPQ. Accordingly, DPS showed a similar behaviour, with a sharp increase and a subsequent decrease at very low RWC, although the maximum DPS was reached at slightly lower RWC than that for the maximum NPQ. The pools of reduced ascorbate and glutathione increased strongly when the RWC values fell below 40% and remained high in fully dehydrated leaves. When plants were re-watered photosynthetic efficiency, NRD, DPS and antioxidant contents recovered their initial control values. However, during rehydration, the zeaxanthin content showed a transient increase, as did NPQ, indicating an increasing demand for non-radiative dissipation. On the other hand, the contents of reduced ascorbate and reduced glutathione decreased but were still relatively high in the initial phase of rehydration, when the rate of photosynthetic electron transport, proton pumping and NRD were still relatively low. These results indicate that several photoprotective mechanisms are operating in R. serbica. Protection from photo-oxidation and photoinhibition appears to be achieved by co-ordinated contributions by ascorbate, glutathione and zeaxanthin-mediated NPQ. This variety of photoprotective mechanisms may be essential for conferring desiccation-tolerance.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
4.
Živko Jovanović Tamara Rakić Branka Stevanović Svetlana Radović 《Plant Growth Regulation》2011,64(3):231-240
In order to investigate changes of oxidative status in relation to the activity of the various protective mechanisms in resurrection
plant Ramonda nathaliae, we have analysed time and relative water content (RWC) related changes in lipid peroxidation and ion leakage, hydrogen peroxide
accumulation, changes of pigment content and antioxidative enzyme activity, together with expression of dehydrins. The results
indicate that enhanced oxidative status during dehydration, not previously reported for resurrection plants, could play an
active role in inducing the desiccation adaptive response in R. nathaliae. A critical phase is shown to exist during dehydration (in the range of RWC between 50 and 70%) during which a significant
increase in hydrogen peroxide accumulation, lipid peroxidation and ion leakage, accompanied by a general decline in antioxidative
enzyme activity, takes place. This phase is designated as a transition characterized by change in the type of stress response.
The initial response, relying mainly on the enzymatic antioxidative system, is suspended but more effective, desiccation specific
protective mechanisms, such as expression of dehydrins, are then switched on. The expression of dehydrins in R. nathaliae could be inducible as well as constitutive. In order to cope with the oxidative stress associated with rapid rewatering,
R. nathaliae reactivated antioxidative enzymes. We propose that controlled elevation of reactive oxygen species, such as hydrogen peroxide,
could be an important mechanism enabling resurrection plants to sense dehydration and to trigger an adaptive programme at
an appropriate stage during the dehydration/rehydration cycle. 相似文献
5.
6.
7.
MEGAN BECKETT FRANCESCO LORETO VIOLETA VELIKOVA CECILIA BRUNETTI MARTINA DI FERDINANDO MASSIMILIANO TATTINI CARLO CALFAPIETRA JILL M. FARRANT 《Plant, cell & environment》2012,35(12):2061-2074
We investigated the photosynthetic limitations occurring during dehydration and rehydration of Xerophyta humilis, a poikilochlorophyllous resurrection plant, and whether volatile and non‐volatile isoprenoids might be involved in desiccation tolerance. Photosynthesis declined rapidly after dehydration below 85% relative water content (RWC). Raising intercellular CO2 concentrations during desiccation suggest that the main photosynthetic limitation was photochemical, affecting energy‐dependent RuBP regeneration. Imaging fluorescence confirmed that both the number of photosystem II (PSII) functional reaction centres and their efficiency were impaired under progressive dehydration, and revealed the occurrence of heterogeneous photosynthesis during desiccation, being the basal leaf area more resistant to the stress. Full recovery in photosynthetic parameters occurred on rehydration, confirming that photosynthetic limitations were fully reversible and that no permanent damage occurred. During desiccation, zeaxanthin and lutein increased only when photosynthesis had ceased, implying that these isoprenoids do not directly scavenge reactive oxygen species, but rather protect photosynthetic membranes from damage and consequent denaturation. X. humilis was found to emit isoprene, a volatile isoprenoid that acts as a membrane strengthener in plants. Isoprene emission was stimulated by drought and peaked at 80% RWC. We surmise that isoprene and non‐volatile isoprenoids cooperate in reducing membrane damage in X. humilis, isoprene being effective when desiccation is moderate while non‐volatile isoprenoids operate when water deficit is more extreme. 相似文献
8.
Bekim Gashi Kasamedin Abdullai Valbona Sota Efigjeni Kongjika 《Physiology and Molecular Biology of Plants》2015,21(1):123-136
Ramonda serbica and Ramonda nathaliae are rare and endemo relict plant species from Balkan Peninsula. An efficient micro propagation and in vitro conservation method via direct and indirect organogenesis from seed and leaf explants, respectively, was established in this study. The seed of both Ramonda species were collected from different populations in Kosovo, and were germinated in nutrient media JG-B without any phytohormone. The highest number of shoots and multiplication rate was observed on JG-B medium supplemented with BAP and IAA (0.5 mg l−1 each), whereas the highest number of leaves per plantlets was found on WPM and RA medium supplemented with BAP and IAA (0.1 mg l−1 each). During this stage of micro propagation some significant differences were observed in plantlets from different populations. The indirect organogenesis from parts of leaves of natural plants was not successful due to unavailability of established protocol for disinfections of the plant material. On other hand, parts of leaves from micro propagated plantlets, cultured on MS medium supplemented with different ratio of BAP and NAA, resulted in the highest efficiency for shoot regeneration. In vitro conservation of micro propagated plants at the lower temperature (4 °C) had a significantly positive effect for storage of more than 12 months. 相似文献
9.
Flavia Navari-Izzo Federico Ricci Concetta Vazzana Mike F. Quartacci 《Physiologia plantarum》1995,94(1):135-142
Boea hygroscopica is a resurrection plant that is able to pass from biosis to anabiosis and vice versa following slow dehydration, but loses this ability following a rapid water loss. Fresh leaves were detached from plants grown in well-watered conditions and subjected to either rapid or slow dehydration and rehydration. Upon rehydration only slowly dried leaves revived. Analysis of thylakoid membranes revealed a rather small amount of total lipids (1,4–2 μmol g?1 dry weight) in comparison with other flowering plants. The main glycolipid was digalactosyldiacylglycerol (DGDG) rather than monogalactosyldiacylglycerol (MGDG) as is common in higher plants. Linoleic acid was the main fatty acid (30–40 mol% of total fatty acids), while linolenic acid was present from 14 to 26 mol%. In both the fresh and rehydrated leaves nearly all lipid components were present in similar amounts. Following dehydration the DGDG/MGDG molar ratio, which was 1.1 in control and rehydrated leaves, doubled by the end of the rapid drying period and was three times as high in slowly dried leaves. The total polar lipid/free sterol molar ratio as well as the free fatty acid level assumed the highest values in the rapidly dehydrated leaves. A shift towards the more unsaturated fatty acids was observed in all lipid classes upon dehydration irrespective of whether it was slow or rapid. Our data show only small differences between rapidly and slowly dehydrated leaves which can be correlated to the capacity of slowly dehydrated leaves to revive. 相似文献
10.
11.
The desiccation-tolerant phenotype of angiosperm resurrection plants is thought to rely on the induction of protective mechanisms that maintain cellular integrity during water loss. Two-dimensional (2D) sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the Xerophyta viscosa Baker proteome was carried out during dehydration to identify proteins that may play a role in such mechanisms. Quantitative analysis revealed a greater number of changes in protein expression levels at 35% than at 65% relative water content (RWC) compared to fully hydrated plants, and 17 dehydration-responsive proteins were identified by tandem mass spectrometry (MS). Proteins showing increased abundance during drying included an RNA-binding protein, chloroplast FtsH protease, glycolytic enzymes and antioxidants. A number of photosynthetic proteins declined sharply in abundance in X. viscosa at RWC below 65%, including four components of photosystem II (PSII), and Western blot analysis confirmed that two of these (psbP and Lhcb2) were not detectable at 30% RWC. These data confirm that poikilochlorophylly in X. viscosa involves the breakdown of photosynthetic proteins during dismantling of the thylakoid membranes. In contrast, levels of these photosynthetic proteins were largely maintained during dehydration in the homoiochlorophyllous species Craterostigma plantagineum Hochst, which does not dismantle thylakoid membranes on drying. 相似文献
12.
Protein dynamics in thylakoids of the desiccation-tolerant plant Boea hygroscopica during dehydration and rehydration 总被引:2,自引:0,他引:2
Navari-Izzo F Quartacci MF Pinzino C Rascio N Vazzana C Sgherri CL 《Plant physiology》2000,124(3):1427-1436
Plants of Boea hygroscopica F. Muell were dehydrated to 9% relative water content (RWC) by withholding water for 26 d, and afterward the plants were rehydrated. Leaves were taken from control plants after 7, 12, and 26 d from the beginning of dehydration, and after 6 and 48 h from rehydration. The RWC decreased by 80% during dehydration, but the leaves regained RWC with rehydration. Dehydrated plants showed lesser amounts of proteins, lipids, and chlorophyll, all of which increased following rewatering. The lipid-to-protein ratio, which decreased during dehydration, returned to control level after 48 h of rehydration. Thylakoid lipids were more unsaturated when RWC reached the value of 9%. EPR measurements of spin-labeled proteins showed the presence of three different groups of proteins with different mobility in thylakoid membranes. The rotational correlation time of groups 1 and 2 increased with dehydration and decreased upon rehydration, whereas group 3 showed little changes. Desiccation did not cause thylakoid swelling or breakage, but the membrane system assemblage showed changes in thylakoid stacking. After 48 h of rehydration the membrane system recovered completely the organization of the fully hydrated state, showing several well-defined and regularly distributed grana. 相似文献
13.
Sonja Siljak-Yakovlev Vladimir Stevanovic Maja Tomasevic Spencer C. Brown Branka Stevanovic 《Environmental and Experimental Botany》2008,62(2):101-112
The genus Ramonda includes three preglacial paleoendemic species surviving as the rare resurrection angiosperms of the Northern hemisphere in refugia habitats in the Balkan (Ramonda nathaliae and Ramonda serbica) and Iberian Peninsulas (Ramonda myconi). This study focuses on: assessing genome size and base composition, determining chromosome number and ploidy level in several populations, evaluating inter- and intra-specific variations in DNA content and chromosome number as well as looking for the possible hybridization in the sympatric zones of Balkan species. R. nathaliae and R. myconi are diploid species (2n = 2x = 48) while R. serbica is hexaploid (2n = 6x = 144). The mean 2C DNA values ranged from 2.30 pg for R. nathaliae to 2.59 pg for R. myconi compared to 7.91 pg for R. serbica. The base composition for R. nathaliae was 42.1% GC, for R. myconi 39.9% and for R. serbica 41.2%. In one population of R. serbica the DNA content ranged from 2C = 7.65 to 11.82 pg, revealing different ploidy levels among its individuals. In sympatric populations genome size was intermediary (~5 pg) between the diploid and hexaploid classes which indicates the hybridization ability between R. serbica and R. nathaliae. It appears that polyploidization is the major evolutionary mechanism in the genus Ramonda. 相似文献
14.
Changes in CO(2) photo-assimilation and PSII photochemical efficiency in Ramonda serbica leaves during a dehydration-rehydration cycle were examined. The rate of CO(2) photo-assimilation was greatly reduced during dehydration, but recovery was complete with rehydration when the relative water content of leaves reached values similar to those of well-hydrated, control leaves. The results showed that the response of R. serbica leaves to severe water stress involves two different mechanisms. In the first, CO(2) assimilation is limited by stomata closure that creates an excess proton concentration in the lumen and activates non-photochemical quenching. This plays an important role in the mechanism of photoprotection by dissipation of excitation energy. When dehydration became severe and leaf RWC reached very low values, the electron transport rate (ETR) decreased markedly, while the capacity for regulatory mechanisms such as q(NP) (non-photochemical quenching) was greatly reduced. For severely dehydrated leaves of R. serbica, it appears that reactive oxygen species (ROS) formation is better prevented by mechanisms that quench chlorophyll triplet formation via lutein. 相似文献
15.
16.
Nitrogen contents were determined in 20 species of “resurrection plants”,i.e. plants with leaves which are able to revive from an air-dry state (viz. Boea hygroscopica, Borya nitida, Cheilanthes sieberi, Coleochloa pallidior, C. setifera, Craterostigma plantagineum, Myrothamnus flabellifolia, Oropetium capense, Pellaea calomelanos, P. falcata, P, viridis, Polypodium polypodioides, Ramondia pyrenaica, Selaginella lepidophylla, Sporobolus stapfianus, Talbotia elegans,Tripogon loliiformis, Xerophyta retinervis, X. villosa, X. viscosa), and in three desiccation sensitive species (Eragrostis tenuifolia, Selaginella kraussiana andSporobolus pyramidalis). In a preponderance of resurrection plants insoluble nitrogen content fell during dehydration of intact plants and soluble non-protein N rose. Both changes were particularly marked in species which lose chlorophyll and thylakoid structure during drying. These trends were usually only partially reversed after 24 h rehydration. Recovery of14C-leucine incorporation in rehydrating leaves was slow. Leaves of desiccation sensitive vascular plants tended on the average to lose soluble protein rather than insoluble N during drying, and tended to have higher soluble non-protein N contents than tolerant plants. However, similarity in the changes in N-contents inXerophyta villosa leaves killed by airdrying compared to leaves surviving air-drying, opposes the view that death was due to excessive loss of protein. 相似文献
17.
Veljovic-Jovanovic S Kukavica B Stevanovic B Navari-Izzo F 《Journal of experimental botany》2006,57(8):1759-1768
Ramonda sp. (Gesneriaceae) is an endemic and relic plant ina very small group of poikilohydric angiosperms that are ableto survive in an almost completely dehydrated state. Senescence-and drought-related changes in the activity of peroxidase (POD;EC 1.11.1.7
[EC]
), ascorbate peroxidase (EC 1.11.1.11
[EC]
), and superoxidedismutase (SOD; EC 1.15.1.1
[EC]
) were determined in leaves of differentage and relative water content. The results indicate that differentPOD isoforms were stimulated during senescence and dehydration.Two of the soluble POD isoforms were anionic with pI 4.5, andtwo were cationic with pI 9.3 and 9.0. The activity of ascorbateperoxidase remained unchanged either by drought or senescence.For the first time, SOD isoforms have now been determined inthis resurrection plant. Several SOD isoforms, all of the Mntype, were found to be anionic with pI 4 and a few others hadpI from 5 to 6, while one band of FeSOD with a lower molecularweight was neutral. Rehydration brought about a remarkable decreaseover the first hour in the activity of all the antioxidant enzymesexamined but activity recovered 1 d after rehydration. The resultsconfirmed that dehydration and senescence caused disturbancein the redox homeostasis of Ramonda leaves, while inducing differentPOD isoforms. A physiological role of peroxidase reaction withhydroxycinnamic acids in conservation and protection of cellularconstituents of desiccated Ramonda leaves is suggested. Key words: Desiccation, peroxidase, Ramonda, senescence, superoxide dismutase 相似文献
18.
19.
In this paper we describe the first procedure for Agrobacterium tumefaciens-mediated genetic transformation of the desiccation tolerant plant Ramonda myconi (L.) Rchb. Previously, we reported the establishment of a reliable and effective tissue culture system based on the integrated
optimisation of antioxidant and growth regulator composition and the stabilisation of the pH of the culture media by means
of a potassium phosphate buffer. This efficient plant regeneration via callus phase provided a basis for the optimisation
of the genetic transformation in R. myconi. For gene delivery, both a standard (method A) and a modified protocol (method B) have been applied. Since the latter has
previously resulted in successful transformation of another resurrection plant, Craterostigma plantagineum, an identical protocol was utilized in transformation of R. myconi, as this method may prove general for dicotyledonous resurrection plants. On this basis, physical and biochemical key variables
in transformation were evaluated such as mechanical microwounding of plant explants and in vitro preinduction of vir genes. While the physical enhancement of bacterial penetration was proved to be essential for successful genetic transformation
of R. myconi, an additional two-fold increase in the transformation frequency was obtained when the above physical and biochemical treatments
were applied in combination. All R
0 and R
1 transgenic plants were fertile, and no morphological abnormalities were observed on the whole-plant level.
Collaborator via a fellowship under the OECD Co-operative Research Programme: Biological Resource Management for Sustainable
Agriculture Systems 相似文献