首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most current models of T cell activation postulate a requirement for two distinct signals. One signal is delivered through the TCR by engagement with peptide/MHC complexes, and the second is delivered by interaction between costimulatory molecules such as CD28 and its ligands CD80 and CD86. Soluble peptide/MHC tetramers provide an opportunity to test whether naive CD8+ T cells can be activated via the signal generated through the TCR-alphabeta in the absence of any potential costimulatory molecules. Using T cells from two different TCR transgenic mice in vitro, we find that TCR engagement by peptide/MHC tetramers is sufficient for the activation of naive CD8+ T cells. Furthermore, these T cells proliferate, produce cytokines, and differentiate into cytolytic effectors. Under the conditions where anti-CD28 is able to enhance proliferation of normal B6 CD4+, CD8+, and TCR transgenic CD8+ T cells with anti-CD3, we see no effect of anti-CD28 on proliferation induced by tetramers. The results of this experiment argue that given a strong signal delivered through the TCR by an authentic ligand, no costimulation is required.  相似文献   

2.
Homeostasis of the naive CD4+ T cell compartment during aging   总被引:1,自引:0,他引:1  
Despite thymic involution, the number of naive CD4(+) T cells diminishes slowly during aging, suggesting considerable peripheral homeostatic expansion of these cells. To investigate the mechanisms behind, and consequences of, naive CD4+ T cell homeostasis, we evaluated the age-dependent dynamics of the naive CD4+ T cell subsets CD45RA+CD31+ and CD45RA+CD31-. Using both a cross-sectional and longitudinal study design, we measured the relative proportion of both subsets in individuals ranging from 22 to 73 years of age and quantified TCR excision circle content within those subsets as an indicator of proliferative history. Our findings demonstrate that waning thymic output results in a decrease in CD45RA+CD31+ naive CD4+ T cells over time, although we noted considerable individual variability in the kinetics of this change. In contrast, there was no significant decline in the CD45RA+CD31- naive CD4+ T cell subset due to extensive peripheral proliferation. Our longitudinal data are the first to demonstrate that the CD45RA+CD31+CD4+ subset also undergoes some in vivo proliferation without immediate loss of CD31, resulting in an accumulation of CD45RA+CD31+ proliferative offspring. Aging was associated with telomere shortening within both subsets, raising the possibility that accumulation of proliferative offspring contributes to senescence of the naive CD4+ T cell compartment in the elderly. In contrast, we observed retention of clonal TCR diversity despite peripheral expansion, although this analysis did not include individuals over 65 years of age. Our results provide insight into naive CD4+ T cell homeostasis during aging that can be used to better understand the mechanisms that may contribute to immunosenescence within this compartment.  相似文献   

3.
TCR-self peptide:MHC interactions play a critical role in thymic positive selection, yet relatively little is known of their function in the periphery. It has been suggested that continued contact with selecting MHC molecules is necessary for long-term peripheral maintenance of naive T cells. More recent studies have also demonstrated a role for specific self peptide:MHC complexes in the homeostatic expansion of naive T cells in lymphopenic mice. Our examination of these processes revealed that, whereas self class II MHC molecules do have a modest effect on long-term survival of individual CD4+ T cells, interactions with specific TCR ligands are not required for peripheral naive CD4+ T cell maintenance. In contrast, selective engagement of TCRs by self-peptide:MHC complexes does promote proliferation of CD4+ T cells under severe lymphopenic conditions, and this division is associated with an activation marker phenotype that is different from that induced by antigenic stimulation. Importantly, however, the ability of naive T cells to divide in response to homeostatic stimuli does not appear to be stringently dependent on TCR-self peptide:MHC interactions. Therefore, these results show that the factors regulating survival and homeostatic expansion of naive T cells in the periphery are not identical. In addition, we provide evidence for a novel form of T cell proliferation that can occur independently of TCR signaling and suggest that this reflects another mechanism regulating homeostatic T cell expansion.  相似文献   

4.
5.
6.
Activation of CD4(+) T cells by APCs occurs by multiple Ag recognition events including the exchange of costimulatory signals and cytokines. Additionally, the T cells acquire APC-derived surface molecules. Herein, we describe for the first time the transfer of human and murine T cell surface receptors to APCs after Ag-specific interaction. This transfer occurs in two qualitatively different phases. The first group of molecules (e.g., CD2) derived from the T cell surface was transferred rapidly after 2 h of interaction, was strongly bound on the DC surface (acid wash-resistant), was strictly dependent on dendritic cell-T cell contact, and transferred independently of T cell activation. The second group, including the CD3/TCR complex, CD27, and OX40, was of intracellular origin, transferred later after 10-16 h in a cell-cell contact-independent fashion, was noncovalently bound, and was strictly dependent on Ag-specific T cell activation. Functionally, murine dendritic cells that received TCR molecules from OVA-specific CD4(+) T cells after Ag-specific interaction were less efficient in priming naive CD4(+) T cells of the same specificity without losing their ability for CD8(+) T cell stimulation, indicating that the transferred TCR molecules mask the Ag-bearing MHC II molecules, thereby reducing their accessibility to following Ag-specific CD4(+) T cells. While the first group of transferred T cell surface molecules might facilitate the detachment of the CD4(+) T cell from the dendritic cell during the early scanning phases, the second group could play an important immunomodulatory role in intraclonal competition of T cells for APC access, making the physical presence of CD4(+) T cells unnecessary.  相似文献   

7.
Murine CD4+ T cells can be subdivided into naive and memory T cells based on surface phenotype, on recall response to Ag, and on differences in activation requirements. Furthermore, several studies have shown that two signals are required for CD4+ T cell activation; one signal is provided by occupancy of the TCR and the other signal is provided by the APC. In this report, analysis of naive and memory CD4 T cells, separated on the basis of CD45 isoform expression, has shown that their requirements for two signals differ. Activation of memory CD4 T cells to proliferate and secrete IL-2/IL-4 only required occupancy of the TCR complex, whereas activation of naive CD4 T cells required an APC-derived signal as well. Moreover, the signal induced by anti-CD3 antibodies differs from the signal provided by anti-V beta cross-linking of the TCR because both antibodies activate memory CD4 T cells but only anti-CD3 activates naive CD4 T cells. Together these data suggest that the consequence of stimulation through the TCR/CD3 signal complex differs between memory and naive CD4 T cells.  相似文献   

8.
9.
The role of the accessory molecule ICAM-1 in activation of subpopulations of human T cells was examined using the bacterial superantigen staphylococcal enterotoxin A (SEA) as a MHC class II and TCR-dependent polyclonal T cell activator. Human T cells responded with different sensitivity to SEA when presented on mouse accessory cells expressing a human transfected MHC class II gene product. Mouse L cells cotransfected with both MHC class II (DR2A or DR7) and ICAM-1-stimulated T cells at 100-fold lower concentrations of SEA as compared to the single transfected cells. mAb reacting with the CD11a, CD18, or ICAM-1 molecules efficiently inhibited T cell activation with the cotransfected HLA-DR2A/ICAM-1 cell but did not influence T cell activation with the HLA-DR2A single transfected cell. Analysis of the ICAM-1 requirement on CD4+ memory (CD4+45RO+) and naive (CD4+45RA+) T cells revealed that CD4+45RA+ naive Th cells were hyporesponsive to SEA-induced activation with the HLA-DR2A single transfectant. However, cotransfection of ICAM-1 enabled these cells to respond to low doses of SEA implicating that they are more dependent on accessory molecules than the CD4+45RO+ cells. rICAM-1 immobilized on a plastic surface, was able to strongly costimulate SEA-induced T cell activation with the HLA-DR2A single transfectant, suggesting that costimulatory signals mediated to the T cells through LFA-1 can be delivered physically separated from the TCR signal. CD4+45RO+ memory and CD4+45RA+ naive Th cells apparently differ in their capacities to be activated by SEA bound to HLA-DR. Although the TCR molecule densities are similar in these two subsets, costimulation with ICAM-1 is required for activation of the CD4+45RA+, but not the CD4+45RO+ T cell subset at 1 to 10,000 ng/ml concentrations of SEA. This observation indicates different activation thresholds of naive and memory Th cells when triggering the TCR over a wide dose interval of superantigen.  相似文献   

10.
CD8+T cells can become anergic following activation, though the cellular mechanism, as compared to CD4+ T cells, remains poorly understood. Here, we examined the effects of different antigen-dose, peptide ligands, and engagement of costimulatory molecules on the induction of CD8+ T cell anergy. We observed that increasing strengths of signals delivered to CD8+ T cells by varying the antigen-dose and the nature of peptide ligands induced increasing degrees of non-responsiveness to secondary stimulation. Furthermore, higher levels of LFA-3 engagement of CD2 rendered CD8+ T cells unresponsive to secondary antigenic re-challenge. This pattern of secondary responsiveness lasted up to 2 weeks following primary stimulation and was not correlated with prior cell division history. These results indicate that the strength of prior stimuli, which is determined by the sum of signals from both TCR and costimulatory molecules, determines the activation threshold and magnitude of CD8+ T cell responses.  相似文献   

11.
HIV-specific CD8 T cell responses are defective in chronic HIV infection. In this study, we report that costimulation with either CD137L (4-1BBL) or CD80 (B7.1) enhanced the Ag-specific expansion and acquisition of effector function by HIV-specific memory CD8 T cells. Ag-specific T cells from recently infected donors showed maximal expansion with single costimulatory molecules. Dual costimulation of T cells from recently infected donors or from healthy donors responding to influenza epitopes led to enhanced responses when the accumulation of cytokines was measured. However, accumulation of regulatory cytokines, particularly IFN-gamma, led to inhibition of further Ag-specific CD8 T cell expansion in the cultures. This inhibition was relieved by neutralization of IFN-gamma or of IFN-gamma, TNF, and IL-10. Thus, strong costimulation of T cells in vitro can lead to induction of regulatory cytokines at levels that limit further T cell expansion. In marked contrast, T cells from long-term (>4 years) infected HIV+ donors exhibited reduced Ag-specific CD8 T cell expansion, reduced CD4 T cell responses, and minimal cytokine accumulation. Dual costimulation with both 4-1BBL and B7.1 enhanced responses of T cells from long-term infected subjects to a level similar to that obtained with T cells from early in HIV infection. Experiments with purified CD8 T cells showed that B7.1 and 4-1BBL could act directly and synergistically on CD8 T cells. Taken together, these data suggest that 4-1BBL and B7.1 have additive or synergistic effects on HIV-specific CD8 T cell responses and represent a promising combination for therapeutic vaccination for HIV.  相似文献   

12.
Optimal proliferation of T cells although initiated via ligation of the CD3/TCR complex requires additional stimulation resulting from adhesive interactions between costimulatory receptors (R) on T cells and their counter-R on APC. At least four distinct adhesion molecules (counter-R) present on APC, B7, ICAM-1 (CD54), LFA-3 (CD58), and VCAM-1 have been individually shown to costimulate T cell activation. Because some of these molecules may be expressed simultaneously on APC, it has been difficult to examine relative contributions of individual counter-R during the induction of T cell proliferation. We have produced soluble IgC gamma 1 fusion chimeras (receptor globulins or Rg) of B7, ICAM-1, LFA-3, and VCAM-1 and compared their relative abilities to costimulate proliferation of resting or Ag-primed CD4+ T cells. When co-immobilized with mAb directed at TCR alpha beta or CD3 but not CD2 or CD28, each Rg induced proliferation of both resting and Ag-primed CD4+ cells. In contrast, similarly co-immobilized CD7 Rg or ELAM-1 Rg were ineffective. Resting CD4+ T cells produced more IL-2, expressed significantly higher levels of IL-2R alpha, and proliferated more efficiently when costimulated with either ICAM-1 Rg or VCAM-1 Rg than with B7 Rg or LFA-3 Rg. CD4+ CD45RO+ memory T cells proliferated more vigorously in response to the costimulation by each of the four Rg than CD4+ CD45RA+ naive T cells. In contrast with the behavior of resting CD4+ T cells, proliferation of Ag-preactivated CD4+ T cells was most efficient when costimulated by B7 Rg. The costimulatory effect of LFA-3 Rg on Ag-primed CD4+ T cells was weaker than that of B7 Rg but was significantly greater than that of either ICAM-1 Rg or VCAM-1 Rg. These results suggest that resting and Ag-primed CD4+ T cells preferentially respond by proliferation to different costimulatory counter-R. ICAM-1 and VCAM-1 may be involved in the initiation of proliferation of Ag-responsive T cells, and B7 and LFA-3 may facilitate sustained proliferation of Ag-primed T cells. The cumulative costimulation by the above counter-R may facilitate optimal expression of various regulatory and effector functions of T cells.  相似文献   

13.
The strength of interactions with APC instructs naive T cells to undergo programmed expansion and differentiation, which is largely determined by the peptide affinity and dose as well as the duration of TCR ligation. Although, most ligands mediating these interactions are terminally sialylated, the impact of the T cell sialylation status on Ag-dependent response remains poorly understood. In this study, by monitoring TCR transgenic CD8+ T cells, OT-I, we show that biochemical desialylation of naive OT-I T cells increases their sensitivity for agonist as well as partial agonist peptides. Desialylation enhances early activation and shortens the duration of TCR stimulation required for proliferation and differentiation, without increasing apoptosis. Moreover, desialylation of naive OT-I T cells augments their response to tumor-presented Ag. These results provide direct evidence for a regulatory role for sialylation in Ag-dependent CD8+ T cell responses and offer a new approach to sensitize or dampen Ag-specific CD8+ T cell responses.  相似文献   

14.
Artificial APCs (aAPCs) genetically modified to express selective costimulatory molecules provide a reproducible, cost-effective, and convenient method for polyclonal and Ag-specific expansion of human T cells for adoptive immunotherapy. Among the variety of aAPCs that have been studied, acellular beads expressing anti-CD3/anti-CD28 efficiently expand CD4+ cells, but not CD8+ T cells. Cell-based aAPCs can effectively expand cytolytic CD8+ cells, but optimal costimulatory signals have not been defined. 4-1BB, a costimulatory molecule expressed by a minority of resting CD8+ T cells, is transiently up-regulated by all CD8+ T cells following activation. We compared expansion of human cytolytic CD8+ T cells using cell-based aAPCs providing costimulation via 4-1BB vs CD28. Whereas anti-CD3/anti-CD28 aAPCs mostly expand naive cells, anti-CD3/4-1BBL aAPCs preferentially expand memory cells, resulting in superior enrichment of Ag-reactive T cells which recognize previously primed Ags and efficient expansion of electronically sorted CD8+ populations reactive toward viral or self-Ags. Using HLA-A2-Fc fusion proteins linked to 4-1BBL aAPCs, 3-log expansion of Ag-specific CD8+ CTL was induced over 14 days, whereas similar Ag-specific CD8+ T cell expansion did not occur using HLA-A2-Fc/anti-CD28 aAPCs. Furthermore, when compared with cytolytic T cells expanded using CD28 costimulation, CTL expanded using 4-1BB costimulation mediate enhanced cytolytic capacity due, in part, to NKG2D up-regulation. These results demonstrate that 4-1BB costimulation is essential for expanding memory CD8+ T cells ex vivo and is superior to CD28 costimulation for generating Ag-specific products for adoptive cell therapy.  相似文献   

15.
16.
In order to fully understand T cell-mediated immunity, the mechanisms that regulate clonal expansion and cytokine production by CD4+ antigen-specific effector T cells in response to a wide range of antigenic stimulation needs clarification. For this purpose, panels of antigen-specific CD4+ T cell clones with different thresholds for antigen-induced proliferation were generated by repeated stimulation with high- or low-dose antigen. Differences in antigen sensitivities did not correlate with expression of TCR, CD4, adhesion or costimulatory molecules. There was no significant difference in antigen-dependent cytokine production by TG40 cells transfected with TCR obtained from either high- or low-dose-responding T cell clones, suggesting that the affinity of TCRs for their ligands is not primary determinant of T cell antigen reactivity. The proliferative responses of all T cell clones to both peptide stimulation and to TCRβ crosslinking revealed parallel dose-response curves. These results suggest that the TCR signal strength of effector T cells and threshold of antigen reactivity is determined by an intrinsic property, such as the TCR signalosome and/or intracellular signaling machinery. Finally, the antigen responses of high- and low-peptide-responding T cell clones reveal that clonal expansion and cytokine production of effector T cells occur independently of antigen concentration. Based on these results, the mechanisms underlying selection of high “avidity” effector and memory T cells in response to pathogen are discussed.  相似文献   

17.
Proliferation of Ag-specific T cells is central to the development of protective immunity. The concomitant stimulation of the TCR and CD28 programs resting T cells to IL-2-driven clonal expansion. We report that a prolonged occupancy of the TCR and CD28 bypasses the need for autocrine IL-2 secretion and sustains IL-2-independent lymphocyte proliferation. In contrast, a short engagement of the TCR and CD28 only drives the expansion of cells capable of IL-2 production. TCR/CD28- and IL-2-driven proliferation revealed a different requirement for PI3K and for the mammalian target of rapamycin (mTOR). Thus, both PI3K and mTOR activities were needed for T cells to proliferate to TCR/CD28-initiated stimuli and for optimal cyclin E expression. In contrast, either PI3K or mTOR were sufficient for IL-2-driven cell proliferation as they independently mediated cyclin E induction. Interestingly, rapamycin delayed cell cycle entry of IL-2-sufficient T cells, but did not prevent their expansion. Together, our findings indicate that the TCR, CD28, and IL-2 independently control T cell proliferation via distinct signaling pathways involving PI3K and mTOR. These data suggest that Ag persistence and the availability of costimulatory signals and of autocrine and paracrine growth factors individually shape T lymphocyte expansion in vivo.  相似文献   

18.
We previously showed that naive CD4+ Th cells acquire peptide-MHC class I (pMHC I) and costimulatory molecules from OVA-pulsed dendritic cells (DC(OVA)), and act as Th-APCs in stimulation of CD8+ CTL responses. In this study, we further demonstrated that naive CD8+ cytotoxic T (Tc) cells also acquire pMHC I and costimulatory CD54 and CD80 molecules by DC(OVA) stimulation, and act as Tc-APC. These Tc-APC can play both negative and positive modulations in antitumor immune responses by eliminating DC(OVA) and neighboring Tc-APC, and stimulating OVA-specific CD8+ central memory T responses and antitumor immunity. Interestingly, the stimulatory effect of Tc-APC is mediated via its IL-2 secretion and acquired CD80 costimulation, and is specifically targeted to OVA-specific CD8+ T cells in vivo via its acquired pMHC I complexes. These principles could be applied to not only antitumor immunity, but also other immune disorders (e.g., autoimmunity).  相似文献   

19.
20.
CD4-mediated signals induce T cell dysfunction in vivo.   总被引:1,自引:0,他引:1  
Triggering of CD4 coreceptors on both human and murine T cells can suppress TCR/CD3-induced secretion of IL-2. We show here that pretreatment of murine CD4+ T cells with the CD4-specific mAb YTS177 inhibits the CD3-mediated activation of the IL-2 promoter factors NF-AT and AP-1. Ligation of CD4 molecules on T cells leads to a transient stimulation of extracellular signal-regulated kinase (Erk) 2, but not c-Jun N-terminal kinase (JNK) activity. Pretreatment with anti-CD4 mAb impaired anti-CD3-induced Erk2 activation. Costimulation with anti-CD28 overcame the inhibitory effect of anti-CD4 Abs, by induction of JNK activation. The in vivo relevance of these studies was demonstrated by the observation that CD4+ T cells from BALB/c mice injected with nondepleting anti-CD4 mAb were inhibited in their ability to respond to OVA Ag-induced proliferation and IL-2 secretion. Interestingly, in vivo stimulation with anti-CD28 mAb restored IL-2 secretion. Furthermore, animals pretreated with anti-CD4 elicited enhanced IL-4 secretion induced by OVA and CD28. These observations suggest that CD4-specific Abs can inhibit T cell activation by interfering with signal 1 transduced through the TCR, but potentiate those delivered through the costimulatory molecule CD28. These studies have relevance to understanding the mechanism of tolerance induced by nondepleting anti-CD4 mAb used in animal models for allograft studies, autoimmune pathologies, and for immunosuppressive therapies in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号