首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chloroplasts contain thylakoid-bound and free ribosomes and polysomes. Whether binding of polysomes plays an immediate role in the regulation of chloroplast protein synthesis is not yet clear. In the present work, variations of protein synthesis and of mRNA content were measured not in greening, but in fully differentiated chloroplasts during the cell cycle of synchronized cultures of Chlamydomonas reinhardii. At different times of the vegetative cell cycle, the RNA was extracted from free and thylakoid-bound chloroplast polysomes and the partition of mRNAs between stroma and thylakoids was measured for two proteins, i.e. the 32-kDa herbicide-binding membrane protein and the soluble large subunit of the ribulose-1,5-bisphosphate carboxylase. At the same time the rates of synthesis of these two proteins were also determined. At 2 h after the onset of light, the content of both mRNAs in chloroplasts had doubled and 75-90% of each of these mRNAs were found to be bound to the thylakoids. The rate of protein synthesis, however, increased 10-fold, but reached its maximum only after about 6 h in the light. The differences in the time courses, in the stimulation of the rate of protein synthesis, and in the mRNA-binding to thylakoids point to a translational regulation of protein synthesis. Furthermore, since a very high proportion of polysomes were bound to thylakoids, containing mRNA for both a membrane and a soluble protein, this light-induced binding of polysomes to thylakoids seems to be an essential, but not the only, prerequisite for protein synthesis in chloroplasts.  相似文献   

2.
By studying the import of radioactively labelled small subunit of ribulose-1,5-bisphosphate carboxylase (pSS) into chloroplasts of the green alga C. reinhardtii cw-15 protein delivery to chloroplasts was found to vary during the cell cycle. Chloroplasts were isolated from highly synchronous cultures at different time points during the cell cycle. When pSS was imported into 'young' chloroplasts isolated early in the light period about three times less pSS was processed to small subunit SS than in 'mature' chloroplasts from the middle of the light period. In 'young' chloroplasts also, less pSS was bound to the envelope surface. During the second half of the light period the import competence of isolated chloroplasts decreased again when based on chlorophyll content or cell volume, but did not change significantly when related to chloroplast number. Measurements of pSS binding to the surface of chloroplasts of different age indicated that the adaptation of protein import competence during the cell cycle is due to a variation of the number of binding sites per chloroplast surface area, rather than to modulation of the binding constant.  相似文献   

3.
4.
Thylakoids are photosynthetically active membranes found in Cyanobacteria and chloroplasts. It is likely that they originated in photosynthetic bacteria, probably in close connection to the occurrence of photosystem II and oxygenic photosynthesis. In higher plants, chloroplasts develop from undifferentiated proplastids. These contain very few internal membranes and the whole thylakoid membrane system is built when chloroplast differentiation takes place. During cell and organelle division a constant synthesis of new thylakoid membrane material is required. Also, rapid adaptation to changes in light conditions and long term adaptation to a number of environmental factors are accomplished by changes in the lipid and protein content of the thylakoids. Thus regulation of synthesis and assembly of all these elements is required to ensure optimal function of these membranes.  相似文献   

5.
6.
Light-grown cells of Ochromonas danica, which contain a single chloroplast per cell, were labeled with [methyl-3H]thymidine for 3 h (0.36 generations) and the distribution of labeled DNA among the progeny chloroplasts was followed during exponential growth in unlabeled medium for a further 3.3 generations using light microscope autoradiography of serial sections of entire chloroplasts. Thymidine was specifically incorporated into DNA in both nuclei and chloroplasts. Essentially all the chloroplasts incorporated label in the 3-h labeling period, indicating that chloroplast DNA is synthesized throughout the cell cycle. Nuclear DNA has a more limited S period. Both chloroplast DNA and nuclear DNA are conserved during 3.3 generations. After 3.3 generations in unlabeled medium, grains per chloroplast followed a Poisson distribution indicating essentially equal labeling of all progeny chloroplasts. It is concluded that the average chloroplast in cells of Ochromonas growing exponentially in the light contains at least 10 segregating DNA molecules.  相似文献   

7.
8.
The chloroplast protein synthesis factor responsible for the translocation step of polypeptide synthesis on chloroplast ribosomes (chloroplast elongation factor G [EF-G]) has been detected in whole cell extracts and in isolated chloroplasts from Euglena gracilis. This factor can be detected by its ability to catalyze translocation on 70 S prokaryotic ribosomes such as those from E. coli. Chloroplast EF-G is present in low levels when Euglena is grown in the dark and can be induced more than 20-fold when the organism is grown in the light. The induction of this factor by light is inhibited by cycloheximide, a specific inhibitor of protein synthesis on cytoplasmic ribosomes. However, inhibitors of chloroplast protein synthesis such as streptomycin or spectinomycin have no effect on the induction of this factor by light. Furthermore, chloroplast EF-G can be partially induced by light in an aplastidic mutant (strain W3BUL) which has neither significant plastid structure nor detectable chloroplast DNA. These data strongly suggest that the genetic information for chloroplast EF-G resides in the nuclear genome, and that this protein is synthesized on cytoplasmic ribosomes prior to compartmentalization within the chloroplasts.  相似文献   

9.
High-pressure freezing (HPF) in combination with freeze substitution (FS) was used to analyse changes in the structure of barley chloroplasts during the daily change of light and darkness. In contrast to conventional treatment of samples, HPF-FS revealed substantial differences in chloroplast shape, volume and ultrastructure in the light period and during darkness. While chloroplasts have an ellipsoidal shape in the light, they have an enlarged and round form during the dark period. Samples collected in the light show the typical differentiation of stroma and grana thylakoids as observed by conventional ultrastructural analyses. In chloroplasts of samples collected during the dark period, thylakoids were swollen and grana stacks to a large extent were disintegrated. Similar changes occurred when leaves in the light were treated with the uncoupler gramicidin. The results suggest that the light-dependent changes in thylakoid membrane organization are related to the light-dependent changes in the ionic milieu of the thylakoid lumen and the stroma.  相似文献   

10.
The ratio of free to thylakoid-bound chloroplast ribosomes in Chlamydomonas reinhardtii undergoes periodic changes during the synchronous light-dark cycle. In the light, when there is an increase in the chlorophyll content and synthesis of thylakoid membrane proteins, about 20-30% of the chloroplast ribosomes are bound to the thylakoid membranes. On the other hand, only a few or no bound ribosomes are present in the dark when there is no increase in the chlorophyll content. The ribosome-membrane interaction depends not only on the developmental stage of the cell but also on light. Thus, bound ribosomes were converted to the free variety after cultures at 4 h in the light had been transferred to the dark for 10 min. Conversely, a larger number of chloroplast ribosomes became attached to the membranes after cultures at 4 h in the dark had been illuminated for 10 min. Under normal conditions, when there was slow cooling of the cultures during cell harvesting, chloroplast polysomal runoff occurred in vivo leading to low levels of thylakoid-bound ribosomes. This polysomal runoff could be arrested by either rapid cooling of the cells or the addition of chloramphenicol or erythromycin. Each of these treatments prevented polypeptide chain elongation on chloroplast ribosomes and thus allowed the polyosomes to remain bound to the thylakoids. Addition of lincomycin, an inhibitor of chain initiation on 70S ribosomes, inhibited the assembly of polysome-thylakoid membrane complex in the light. These results support a model in which initiation of mRNA translation begins in the chloroplast stroma, and the polysome subsequently becomes attached to the thylakoid membrane. Upon natural chain termination, the chloroplast ribosomes are released from the membrane into the stroma.  相似文献   

11.
The chloroplast protein synthesizing factor responsible for the binding of aminoacyl-tRNA to ribosomes (EF-Tuchl) has been identified in extracts of Euglena gracilis. This factor is present in low levels when Euglena is grown in the dark and can be induced more than 10-fold when the organism is exposed to light. The induction of the chloroplast EF-Tu by light is inhibited by streptomycin, an inhibitor of protein synthesis on chloroplast ribosomes, indicating that protein synthesis within the chloroplast itself is required for the induction of this factor. The induction of the chloroplast EF-Tu by light is also inhibited by cycloheximide, a specific inhibitor of protein synthesis on cytoplasmic ribosomes. The effect of cycloheximide probably results from the inhibition of chloroplast ribosome synthesis which requires the synthesis of many proteins by the cytoplasmic translational system. Chloroplast EF-Tu cannot be induced by light in an aplastidic mutant (strain W3BUL) of Euglena which has neither significant plastid structure nor detectable chloroplast DNA. These data strongly suggest that the genetic information for chloroplast EF-Tu resides in the chloroplast genome and that this protein is synthesized within the organelle itself.  相似文献   

12.
In the present investigation fractioned cellular components like intact pigment bearing thylakoids/chloroplasts, carotenoids, protein, polysaccharides were extracted from the cyanobacterium Anabaena sphaerica and green alga Chlorococcum infusionum. Each of these extracts was used separately in search for efficient reducing agents during gold nanoparticle (GNP) production in pro‐ and eukaryotic algal cell systems. The whole biomass and extracted compounds or cellular structures were exposed in 25 mg L?1 aqueous hydrogen tetrachloroaurate solutions separately at room temperature. Isolated viable chloroplasts from C. infusionum and thylakoids from A. sphaerica were found to be able to reduce gold ions. The protein extracts of both strains were also able to synthesize GNP at 4°C. Extracted polysaccharides of the two strains responded differently. Polysaccharides from A. sphaerica showed positive response in GNP synthesis, whereas no change was observed for C. infusionum. The carotenoids extracts from both strains acted like an efficient reducing agent. Initially the reducing efficiency of these extracted components was confirmed by the appearance of purple color in biomass or in experimental media. The GNPs, synthesized within the biomass were extracted by sonication with sodium citrate. The UV–vis spectroscopy of extracted purple colored suspensions and media showed the absorption bands at approximately 530–540 nm indicating a strong positive signal of GNP synthesis. Transmission electro n microscopy determined the size and shapes of the particles. The X‐ray diffraction study of the synthesized GNP revealed that the 2θ values appeared at 38.2°, 44.5°, 64.8° and 77.8°. Amongst all, isolated thylakoids and chloroplast showed only spherical GNP production with variable size range at pH 4. Monodisperse GNPs were also synthesized by isolated thylakoids and chloroplast at pH 9. A detailed morphological change of gold treated biomass was revealed employing scanning electron microscopy. The fluorescent property of gold loaded cells was studied by fluorescence microscopy.  相似文献   

13.
14.
One of the earliest events in the process of leaf senescence is dismantling of chloroplasts. Mesophyll cell chloroplasts from rosette leaves were studied in Arabidopsis thaliana undergoing natural senescence. The number of chloroplasts decreased by only 17% in fully yellow leaves, and chloroplasts were found to undergo progressive photosynthetic and ultrastructural changes as senescence proceeded. In ultrastructural studies, an intact tonoplast could not be visualized, thus, a 35S-GFP::δ-TIP line with a GFP-labeled tonoplast was used to demonstrate that chloroplasts remain outside of the tonoplast even at late stages of senescence. Chloroplast DNA was measured by real-time PCR at four different chloroplast loci, and a fourfold decrease in chloroplast DNA per chloroplast was noted in yellow senescent leaves when compared to green leaves from plants of the same age. Although chloroplast DNA did decrease, the chloroplast/nuclear gene copy ratio was still 31:1 in yellow leaves. Interestingly, mRNA levels for the four loci differed: psbA and ndhB mRNAs remained abundant late into senescence, while rpoC1 and rbcL mRNAs decreased in parallel to chloroplast DNA. Together, these data demonstrate that, during senescence, chloroplasts remain outside of the vacuole as distinct organelles while the thylakoid membranes are dismantled internally. As thylakoids were dismantled, Rubisco large subunit, Lhcb1, and chloroplast DNA levels declined, but variable levels of mRNA persisted.  相似文献   

15.
Spinach seeds (Spinacia oleracea L.) given massive doses of γ-irradiation (500 krad) germinate and form a seedling with two green cotyledons and a radicle, but develop no further. Irradiated cotyledons show no increase in cell number or total DNA over a 7-day period in the light, while in control cotyledons there is a small increase in cell number and large increases in total DNA and chloroplast number. The chloroplasts of irradiated cotyledons are delayed in their division, become greatly enlarged and contain large amounts of starch. The whole population of chloroplasts subsequently undergoes a wave of division. The daughter chloroplasts show normal thylakoid development, but have some abnormal structural features caused by the radiation stress. Information on the effect of X-irradiation, ultraviolet irradiation, and 5-fluorodeoxyuridine on chloroplast replication and on chloroplast and nuclear DNA synthesis was obtained from cultured spinach leaf discs. It appears that chloroplast replication is more resistant to ionizing radiation than cell division and can proceed in the absence of nuclear DNA synthesis and greatly reduced chloroplast DNA synthesis.  相似文献   

16.
Recent studies have shown that guard cell and coleoptile chloroplasts appear to be involved in blue light photoreception during blue light-dependent stomatal opening and phototropic bending. The guard cell chloroplast has been studied in detail but the coleoptile chloroplast is poorly understood. The present study was aimed at the characterization of the corn coleoptile chloroplast, and its comparison with mesophyll and guard cell chloroplasts. Coleoptile chloroplasts operated the xanthophyll cycle, and their zeaxanthin content tracked incident rates of solar radiation throughout the day. Zeaxanthin formation was very sensitive to low incident fluence rates, and saturated at around 800–1000 mol m–2 s–1. Zeaxanthin formation in corn mesophyll chloroplasts was insensitive to low fluence rates and saturated at around 1800 mol m–2 s–1. Quenching rates of chlorophyll a fluorescence transients from coleoptile chloroplasts induced by saturating fluence rates of actinic red light increased as a function of zeaxanthin content. This implies that zeaxanthin plays a photoprotective role in the coleoptile chloroplast. Addition of low fluence rates of blue light to saturating red light also increased quenching rates in a zeaxanthin-dependent fashion. This blue light response of the coleoptile chloroplast is analogous to that of the guard cell chloroplast, and implicates these organelles in the sensory transduction of blue light. On a chlorophyll basis, coleoptile chloroplasts had high rates of photosynthetic oxygen evolution and low rates of photosynthetic carbon fixation, as compared with mesophyll chloroplasts. In contrast with the uniform chloroplast distribution in the leaf, coleoptile chloroplasts were predominately found in the outer cell layers of the coleoptile cortex, and had large starch grains and a moderate amount of stacked grana and stroma lamellae. Several key properties of the coleoptile chloroplast were different from those of mesophyll chloroplasts and resembled those of guard cell chloroplasts. We propose that the common properties of guard cell and coleoptile chloroplasts define a functional pattern characteristic of chloroplasts specialized in photosensory transduction.Abbreviations Ant or A antheraxanthin - dv/dt fluorescence quenching rate - Fm maximum yield of fluorescence with all PS II reaction centers closed - Fo yield of instantaneous fluorescence with all PS II reaction centers open - Vio or V violaxanthin - Zea or Z zeaxanthin  相似文献   

17.
The effects of light on both the division cycle of chloroplasts and the synthesis of chloroplast DNA were investigated in cultured discs taken from the distal end of 2-centimeter spinach (Spinacia oleracea) leaves. Comparisons were made of discs cultured for a maximum of 4 days in a shaking liquid medium under continuous white light, darkness, and of discs cultured for 1 day in light following 3 days in darkness. In continuous white light the shortest generation time of chloroplasts observed in this study was 19.4 hours and the duration of spherical, ovoid, and dumbbell-shaped stages in the division cycle were 13.4, 2.8, and 3.1 hours, respectively. In darkness the generation times of chloroplasts extended to 51.5 hours. Under these conditions the duration of spherical, ovoid, and dumbbell-shaped stages were 22.8, 8.4, and 20.2 hours, respectively, suggesting that in darkness the separation of dumbbell-shaped chloroplasts may be the rate limiting step. When discs cultured in the dark were transferred to light, most dumbbell-shaped chloroplasts separated into daughter chloroplasts in less than an hour. Measurements of chloroplast DNA established that the cellular level of chloroplast DNA increased 10-fold over the 4 days of culture in continuous white light. Comparisons of the plastids of dark and light grown discs showed that the synthesis of chloroplast DNA was enhanced by light. Observations of DAPI stained dividing chloroplasts indicate that DNA partitioning can take place during the final stage of chloroplast division and that it does not precede plastid division.  相似文献   

18.
Leaf specimens of evergreen Diapensia lapponica were collected monthly in Northern Finland (ca 70°N) in order to study seasonal changes in the ultrastructure of the chloroplasts of the palisade mesophyll.
The volume fraction of chloroplasts per cell was lowest in summer and increased towards autumn and winter. However, the relative size seemed to be higher in summer than in other seasons. Length/width (L/W) ratio was calculated as an index of the chloroplast shape. The shape varied from elongated (usually concavo-convex in profile), with an L/W ratio from 1.9 to 2.5 in summer, to roundish or irregular (L/W ratio from 1.2 to 1.4) in midwinter. In autumn the chloroplasts were most elongated (LW ratio 2.6). The starch content was highest at the end of June when it constituted 38% of the volume of chloroplast. It decreased from then till November and was absent during the rest of the winter. Changes in the thylakoid system involved an increase in the number of partitions from an average of three in early summer to 11 in autumn and a decrease to M again towards winter. In spring it was up to 7 again. The large grana and high portion of stroma thylakoids observed in late August - September (the period of rhythmic light) are consistent with the high photosynthesis activity reported previously in D. lapponica in laboratory conditions.  相似文献   

19.
Recent studies have shown that coleoptile chloroplasts operate the xanthophyll cycle, and that their zeaxanthin concentration co-varies with their sensitivity to blue light. The present study characterized the distribution of photosynthetic pigments in thylakoid pigment–protein complexes from dark-adapted and light-treated coleoptile and mesophyll chloroplasts, the low temperature fluorescence emission spectra, and the rates of PS I and PS II electron transport in both types of chloroplasts from 5-day-old corn seedlings. Pigments were extracted from isolated PS I holocomplex, LHC IIb trimeric and LHC II monomeric complexes and analyzed by HPLC. Chlorophyll distribution in coleoptile thylakoids showed 31% of the total collected Chl in PS I and 65% in the light harvesting complexes of PS II. In mesophyll thylakoids, the values were 44% and 54%, respectively. Mesophyll and coleoptile PS I holocomplexes differed in their Chl t a/Chl t b ratios (8.1 and 6.1, respectively) and -carotene content. In contrast, mesophyll and coleoptile LHC IIb trimers and LHC II monomers had similar Chl t a/Chl t b ratios and -carotene content. The three analyzed pigment–protein complexes from dark-adapted coleoptile chloroplasts contained zeaxanthin, whereas there was no detectable zeaxanthin in the complexes from dark-adapted mesophyll chloroplasts. In both chloroplast types, zeaxanthin and antheraxanthin increased markedly in the three pigment–protein complexes upon illumination, while violaxanthin decreased. In mesophyll thylakoids, zeaxanthin distribution as a percentage of the xanthophyll cycle pool was: LHC II monomers > LHC IIb trimers > PS I holocomplex, and in coleoptile thylakoids, it was: LHC IIb trimers > LHC II monomers = PS I holocomplex. Low temperature (77 K) fluorescence emission spectra showed that the 686 nm emission of coleoptile chloroplasts was approximately 50% larger than that of mesophyll chloroplasts when normalized at 734 nm. The pigment and fluorescence analysis data suggest that there is relatively more PS II per PS I and more LHC I per CC I in coleoptile chloroplasts than in mesophyll chloroplasts. Measurements of t in vitro uncoupled photosynthetic electron transport showed approximately 60% higher rates of electron flow through PS II in coleoptile chloroplasts than in mesophyll chloroplasts. Electron transport rates through PS I were similar in both chloroplast types. Thus, when compared to mesophyll chloroplasts, coleoptile chloroplasts have a distinct PS I pigment composition, a distinct chlorophyll distribution between PS I and PS II, a distinct zeaxanthin percentage distribution among thylakoid pigment–protein complexes, a higher PS II-related fluorescence emission, and higher PS II electron transport capacity. These characteristics may be associated with a sensory transducing role of coleoptile chloroplasts.  相似文献   

20.
Olisthodiscus luteus is a unicellular biflagellate alga which contains many small discoidal chloroplasts. This naturally wall-less organism can be axenically maintained on a defined nonprecipitating artificial seawater medium. Sufficient light, the presence of bicarbonate, minimum mechanical turbulence, and the addition of vitamin B12 to the culture medium are important factors in the maintenance of a good growth response. Cells can be induced to divide synchronously when subject to a 12-hour light/12-hour dark cycle. The chronology of cell division, DNA synthesis, and plastid replication has been studied during this synchronous growth cycle. Cell division begins at hour 4 in the dark and terminates at hour 3 in the light, whereas DNA synthesis initiates 3 hours prior to cell division and terminates at hour 10 in the dark. Synchronous replication of the cell's numerous chloroplasts begins at hour 10 in the light and terminates almost 8 hours before cell division is completed. The average number of chloroplasts found in an exponentially growing synchronous culture is rather stringently maintained at 20 to 21 plastids per cell, although a large variability in plastid complement (4-50) is observed within individual cells of the population. A change in the physiological condition of an Olisthodiscus cell may cause an alteration of this chloroplast complement. For example, during the linear growth period, chloroplast number is reduced to 14 plastids per cell. In addition, when Olisthodiscus cells are grown in medium lacking vitamin B12, plastid replication continues in the absence of cell division thereby increasing the cell's plastid complement significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号