首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligodeoxynucleic acid (21-mer) containing both negatively charged phosphate and positively charged ribonucleic guanidine linkages (RNG/DNA chimera) have been synthesized. DNA binding characteristics and nuclease resistance of RNG/DNA chimeras have been evaluated. Using the bcr-abl oncogene (cause of chronic myeloid leukemia) as a target, the binding of a 21-mer RNG/DNA chimera that includes six RNG's is more than 103.5 stronger than the binding of 21-mer composed solely of DNA.  相似文献   

2.
The replacement of phosphodiester linkages of the polyanion DNA with S-methylthiourea linkers provides the polycation deoxyribonucleic S-methylthiourea (DNmt). Molecular dynamics studies to 1,220 ps of the hybrid triplex formed from octameric DNmt strands d(Tmt)8 with a complementary DNA oligomer strand d(Ap)8 have been carried out with explicit water solvent and Na+Cl- counterions under periodic boundary conditions using the CHARMM force field and the Ewald summation method. The Watson-Crick and Hoogsteen hydrogen-bonding patterns of the A/T tracts remained intact without any structural restraints for triplex structures throughout the simulation. The duplex portion of the triplex structure equilibrated at a B-DNA conformation in terms of the helical rise and other helical parameters. The dynamic structures of the DNmt x DNA x DNmt triplex were determined by examining histograms from the last 800 ps of the dynamics run. These included the hydrogen-bonding pattern (sequence recognition), three-centered bifurcating occurrences, minor groove width variations, and bending of tracts for the hybrid triplex structures. Together with the Watson-Crick hydrogen-bondings, the strong Hoogsteen hydrogen-bondings, the partially maintained three-centered bifurcatings in the Watson-Crick pair, and the medium-strength three-centered bifurcatings in the Hoogsteen pair suggest that the hybrid triplex is energetically favorable as compared to a duplex with similar base stacking, van der Waals interactions, and helical parameters. This is in agreement with our previously reported thermodynamic study, in which only triplex structures were observed in solution. The bending angle measured between the local axis vectors of the first and last helical axis segments is about 20 degrees for the Watson-Crick portion of the averaged structure. Propeller twist (associated with three-centered hydrogen-bonding) up to -30 degrees, native to DNA AT base pairing, was also observed for the triplex structure. The sugar pseudorotation phase angles and the ring rotation angles for the DNA strand are within the C3'-endo domain and C2'-endo domain for the DNmt strand. Water spines are observed in both minor and major grooves throughout the dynamics run. The molecular dynamics simulations of the structural properties of DNmt x DNA x DNmt hybrid triplex is compared to the DNG x DNA x DNG hybrid triplex (In DNG the -O-(PO2-)-O- linkers in DNA is replaced by -NH-C(=N+H2)-NH-).  相似文献   

3.
Abstract

The replacement of phosphodiester linkages of the polyanion DNA with S-methylthiourea linkers provides the polycation deoxyribonucleic S-methylthiourea (DNmt). Molecular dynamics studies to 1,220 ps of the hybrid triplex formed from octameric DNmt strands d(Tmt)8 with a complementary DNA oligomer strand d(Ap)8 have been carried out with explicit water solvent and Na counterions under periodic boundary conditions using the CHARMM force field and the Ewald summation method. The Watson-Crick and Hoogsteen hydrogen-bonding patterns of the A/T tracts remained intact without any structural restraints for triplex structures throughout the simulation. The duplex portion of the triplex structure equilibrated at a B-DNA conformation in terms of the helical rise and other helical parameters. The dynamic structures of the DNmt·DNA·DNmt triplex were determined by examining histograms from the last 800 ps of the dynamics run. These included the hydrogen-bonding pattern (sequence recognition), three-centered bifurcating occurrences, minor groove width variations, and bending of tracts for the hybrid triplex structures. Together with the Watson-Crick hydrogen-bondings, the strong Hoogsteen hydrogen-bondings, the partially maintained three-centered bifurcatings in the Watson-Crick pair, and the medium-strength three-centered bifurcatings in the Hoogsteen pair suggest that the hybrid triplex is energetically favorable as compared to a duplex with similar base stacking, van der Waals interactions, and helical parameters. This is in agreement with our previously reported thermody- namic study, in which only triplex structures were observed in solution. The bending angle measured between the local axis vectors of the first and last helical axis segments is about 20° for the Watson-Crick portion of the averaged structure. Propeller twist (associated with three-centered hydrogen-bonding) up to ?30°, native to DNA AT base pairing, was also observed for the triplex structure. The sugar pseudorotation phase angles and the ring rotation angles for the DNA strand are within the C3′-endo domain and C2′-endo domain for the DNmt strand. Water spines are observed in both minor and major grooves throughout the dynamics run. The molecular dynamics simulations of the structural properties of DNmt·DNA·DNmt hybrid triplex is compared to the DNG·DNA·DNG hybrid triplex (In DNG the -O-(PO2-)-O- linkers in DNA is replaced by -NH-C(=N2)-NH-).  相似文献   

4.
Cancerous cell immortality is due to relatively high concentrations of telomerase enzyme which maintains telomere sequence during cell division. Deoxyribonucleic guanidine (DNG) is a positively charged DNA analog in which guanidine replaces the phosphordiester linkage of DNA. Mixed sequences of DNG and DNA oligonucleotides are referred to as chimera. Complexation of DNG and chimeric polycations with the complementary negatively charged non-coding telomere single strand d(5'-TTAGGG-3')(n) and the 11-base telomeric RNA template (5'-CUAACCCUAAC-3') in the active site of telomerase has been studied. Calculated by ensemble sampling simulations in GBMV solvent model, we found that binding of complementary DNG hexamer with telomere is favored over that of DNA-telomere by approximately 10(6)-fold and binding of chimera hexamer is favored by approximately 10(4)-fold. Binding of complementary DNG with telomeric RNA is favored by 43 kcal/mol over telomere substrate binding with telomeric RNA.  相似文献   

5.
A solid-phase synthesis for oligomeric DNmt is reported. Synthesis proceeds in 3'-5' direction and involves coupling of a protected 3'-isothiocyanate with the corresponding 5'-amine of the growing oligo chain. The difference in oligomeric thiourea/S-methylthiourea binding to DNA is investigated.  相似文献   

6.
The melting properties of hexameric oligonucleotide AgTgAgTgAgT, in which the phosphodiester linkages of the DNA have been replaced by guanidium linkages, have been evaluated. Using the juvenile esterase gene as a target, the binding of a 20-mer DNG/DNA chimera that includes AgTgAgTgAgT is more than 10(5.7) stronger than the binding of 20-mer composed solely of DNA.  相似文献   

7.
The intervening domain of the thermostable Thermus aquaticus DNA polymerase (TAQ: polymerase), which has no catalytic activity, has been exchanged for the 3'-5' exonuclease domain of the homologous mesophile Escherichia coli DNA polymerase I (E.coli pol I) and the homologous thermostable Thermotoga neapolitana DNA polymerase (TNE: polymerase). Three chimeric DNA polymerases have been constructed using the three-dimensional (3D) structure of the Klenow fragment of the E.coli pol I and 3D models of the intervening and polymerase domains of the TAQ: polymerase and the TNE: polymerase: chimera TaqEc1 (exchange of residues 292-423 from TAQ: polymerase for residues 327-519 of E.coli pol I), chimera TaqTne1 (exchange of residues 292-423 of TAQ: polymerase for residues 295-485 of TNE: polymerase) and chimera TaqTne2 (exchange of residues 292-448 of TAQ: polymerase for residues 295-510 of TNE: polymerase). The chimera TaqEc1 showed characteristics from both parental polymerases at an intermediate temperature of 50 degrees C: high polymerase activity, processivity, 3'-5' exonuclease activity and proof-reading function. In comparison, the chimeras TaqTne1 and TaqTne2 showed no significant 3'-5' exonuclease activity and no proof-reading function. The chimera TaqTne1 showed an optimum temperature at 60 degrees C, decreased polymerase activity compared with the TAQ: polymerase and reduced processivity. The chimera TaqTne2 showed high polymerase activity at 72 degrees C, processivity and less reduced thermostability compared with the chimera TaqTne1.  相似文献   

8.
A systematic study to evaluate the ability of 5'-DNA-3'-p-(N)-PNA-(C) chimeras to form triple helix structures has been undertaken. Preliminary results carried out on a 16-mer chimera with three PNA monomers at the 3'-end showed the formation of a stable DNA-PNA/DNA/DNA triplex, having similar conformational behaviour to a canonical DNA/DNA/DNA triplex.  相似文献   

9.
Wolfe SA  Grant RA  Pabo CO 《Biochemistry》2003,42(46):13401-13409
Proteins that employ dimerization domains to bind cooperatively to DNA have a number of potential advantages over monomers with regards to gene regulation. Using a combination of structure-based design and phage display, a dimeric Cys(2)His(2) zinc finger protein has been created that binds cooperatively to DNA via an attached leucine zipper dimerization domain. This chimera, derived from components of Zif268 and GCN4, displayed excellent DNA-binding specificity, and we now report the 1.5 A resolution cocrystal structure of the Zif268-GCN4 homodimer bound to DNA. This structure shows how phage display has annealed the DNA binding and dimerization domains into a single functional unit. Moreover, this chimera provides a potential platform for the creation heterodimeric zinc finger proteins that can regulate a desired target gene through cooperative DNA recognition.  相似文献   

10.
Abstract

A systematic study to evaluate the ability of 5′-DNA-3′-p-(N)-PNA-(C) chimeras to form triple helix structures has been undertaken. Preliminary results carried out on a 16-mer chimera with three PNA monomers at the 3′-end showed the formation of a stable DNA-PNA/DNA/DNA triplex, having similar conformational behaviour to a canonical DNA/DNA/DNA triplex.  相似文献   

11.
12.
Two ligand-intercalator-peptide nucleic acid conjugates (L-NADI-PNAs) have been synthesized. Affinity of these conjugates to their complementary DNAs was found to be affected by Zn(2+). The magnitude of this effect could be controlled by a variation of the ligand. Upon binding Zn(2+) the L-NADI-PNAs form positively charged ZnL complexes, which interact with the negatively charged DNA backbone. This electrostatic interaction stabilizes PNA/DNA duplexes. It has been found that Zn(2+) dependent stabilization takes place only if the ZnL complex has a higher total positive charge than the ligand. Linear correlation has been observed between Zn(2+) induced stabilization of PNA/DNA duplexes and difference of charges of the ZnL complex and the ligand.  相似文献   

13.
Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the sequence alteration while RNA residues aid in complex stability. In this study, the two strands were separated in the hope of defining the role each plays in conversion. Using a series of single-stranded oligonucleotides, comprised of all RNA or DNA residues and various mixtures, several new structures have emerged as viable molecules in nucleotide conversion. When extracts from mammalian and plant cells and a genetic readout assay in bacteria are used, single-stranded oligonucleotides, containing a defined number of thioate backbone modifications, were found to be more active than the original chimera structure in the process of gene repair. Single-stranded oligonucleotides containing fully modified backbones were found to have low repair activity and in fact induce mutation. Molecules containing various lengths of modified RNA bases (2′-O-methyl) were also found to possess low activity. Taken together, these results confirm the directionality of nucleotide conversion by the DNA strand of the chimera and further present a novel, modified single-stranded DNA molecule that directs conversion in plant and animal cell-free extracts.  相似文献   

14.
Synthesis of the novel alpha-L-ribofuranosyl phosphoramidite derivative was accomplished via the alpha-L-ribofuranosyl thymine nucleoside. Amidite was used in automated syntheses of chimeric oligonucleotides composed of mixtures of the novel alpha-L-RNA nucleotide monomer ((alphaL)T, alpha-L-ribo configured RNA), and DNA, LNA (T(L), locked nucleic acid) or alpha-L-LNA ((alphaL)T(L), alpha-L-ribo configured locked nucleic acid) nucleotide monomers. For alpha-L-RNA/DNA and alpha-L-RNA/alpha-L-LNA chimeras, RNA-selective hybridization was obtained, for alpha-L-RNA/alpha-L-LNA chimera we found increased binding affinity compared to the corresponding DNA:RNA reference duplex. In addition, alpha-L-RNA/alpha-L-LNA chimera displayed significant stabilization towards 3'-exonucleolytic degradation. These results indicate that alpha-L-RNA/alpha-L-LNA chimeras deserve further evaluation as antisense molecules.  相似文献   

15.
The positive charges and structural properties of the mitochondrial leader sequence of aldehyde dehydrogenase have been extensively studied in vitro. The results of these studies showed that increasing the helicity of this leader would compensate for reduced import from positive charge substitutions of arginine with glutamine or the insertion of negative charged residues made in the native leader. In this in vivo study, utilizing the green fluorescent protein (GFP) as a passenger protein, import results showed the opposite effect with respect to helicity, but the results from mutations made within the native leader sequence were consistent between the in vitro and in vivo experiments. Leader mutations that reduced the efficiency of import resulted in a cytosolic accumulation of a truncated GFP chimera that was fluorescent but devoid of a mitochondrial leader. The native leader efficiently imported before GFP could achieve a stable, import-incompetent structure, suggesting that import was coupled with translation. As a test for a co-translational mechanism, a chimera of GFP that contained the native leader of aldehyde dehydrogenase attached at the N terminus and a C-terminal endoplasmic reticulum targeting signal attached to the C terminus of GFP was constructed. This chimera was localized exclusively to mitochondria. The import result with the dual signal chimera provides support for a co-translational mitochondrial import pathway.  相似文献   

16.
The voltage-gated potassium channel subunit Kv2.1 forms heterotetrameric channels with the silent subunit Kv6.4. Chimeric Kv2.1 channels containing a single transmembrane segment from Kv6.4 have been shown to be functional. However, a Kv2.1 chimera containing both S1 and S5 from Kv6.4 was not functional. Back mutation of individual residues in this chimera (to the Kv2.1 counterpart) identified four positions that were critical for functionality: A200V and A203T in S1, and T343M and P347S in S5. To test for possible interactions in Kv2.1, we used substitutions with charged residues and tryptophan for the outermost pair 203/347. Combinations of substitutions with opposite charges at both T203 and S347 were tolerated but resulted in channels with altered gating kinetics, as did the combination of negatively charged aspartate substitutions. Double mutant cycle analysis with these mutants indicated that both residues are energetically coupled. In contrast, replacing both residues with a positively charged lysine together (T203K + S347K) was not tolerated and resulted in a folding or trafficking deficiency. The nonfunctionality of the T203K + S347K mutation could be restored by introducing the R300E mutation in the S4 segment of the voltage sensor. These results indicate that these specific S1, S4, and S5 residues are in close proximity and interact with each other in the functional channel, but are also important determinants for Kv2.1 channel maturation. These data support the view of an anchoring interaction between S1 and S5, but indicate that this interaction surface is more extensive than previously proposed.  相似文献   

17.
Cells were isolated from stage X embryos of a line of Barred Plymouth Rock chickens (that have black pigment in their feathers due to the recessive allele at the I locus) and injected into the subgerminal cavity of embryos from an inbred line of Dwarf White Leghorns (that have white feathers due to the dominant allele at the I locus). Of 53 Dwarf White Leghorn embryos that were injected with Barred Plymouth Rock blastodermal cells, 6 (11.3%) were phenotypically chimeric with respect to feather colour and one (a male) survived to hatching. The distribution of black feathers in the recipients was variable and not limited to a particular region although, in all but one case, the donor cell lineage was evident in the head. The male somatic chimera was mated to several Barred Plymouth Rock hens to determine the extent to which donor cells had been incorporated into his testes. Of 719 chicks hatched from these matings, 2 were phenotypically Barred Plymouth Rocks demonstrating that cells capable of incorporation into the germline had been transferred. Fingerprints of the blood and sperm DNA from the germline chimera indicated that both of these tissues were different from those of the inbred line of Dwarf White Leghorns. Bands that were present in fingerprints of blood DNA from the chimera and not present in those of the Dwarf White Leghorns were observed in those of the Barred Plymouth Rocks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Paul T  Young MJ  Hill IE  Ingold KU 《Biochemistry》2000,39(14):4129-4135
It is well established that the peroxyl radicals formed during the thermal decomposition of 2,2'-azobis(amidinopropane), ABAP, in oxygenated water can cleave double-stranded DNA, from which fact it has been concluded that peroxyl radicals, as a general class, can induce DNA strand scission. However, the ABAP-derived radicals are positively charged, and DNA is a negatively charged polyanion. Moreover, the relatively small and, therefore, free to diffuse peroxyl radicals likely to be formed in vivo will generally be negatively charged or neutral. Plasmid supercoiled DNA [pBR 322, 4361 base pairs (bp)] was reacted with known, equal fluxes of two positively charged peroxyl radicals, a negatively charged peroxyl radical, and a neutral peroxyl radical. The two positively charged peroxyl radicals degraded >/=80% of the supercoiled pBR 322 at a flux of 4 radicals/bp, but the negatively charged and neutral peroxyl radicals had no significant effect even at a flux as high as 24 radicals/bp. The same lack of effect on the DNA was also observed with high fluxes of superoxide/hydroperoxyl radicals. Similar results were obtained with another supercoiled DNA, pUC 19, except that pUC 19 is somewhat more sensitive to strand scission by positively charged peroxyl radicals than pBR 322. We conclude that most of the peroxyl radicals likely to be formed in vivo have little or no ability to induce DNA strand scission and that the potential role of electrostatics in radical/DNA reactions should always be considered.  相似文献   

19.
Packaging of viral genomes into their respective capsids requires partial neutralization of the highly negatively charged RNA or DNA. Many viruses, including the Microviridae bacteriophages phiX174, G4, and alpha3, have solved this problem by coding for a highly positively charged nucleic acid-binding protein that is packaged along with the genome. The phiX174 DNA-binding protein, J, is 13 amino acid residues longer than the alpha3 and G4 J proteins by virtue of an additional nucleic acid-binding domain at the amino terminus. Chimeric phiX174 particles containing the smaller DNA-binding protein cannot be generated due to procapsid instability during DNA packaging. However, chimeric alpha3 and G4 phages, containing the phiX174 DNA-binding protein in place of the endogenous J protein, assemble and are infectious, but are less dense than the respective wild-type species. In addition, host cell attachment and native gel migration assays indicate surface variations of these viruses that are controlled by the nature of the J protein. The structure of alpha3 packaged with phiX174 J protein was determined to 3.5A resolution and compared with the previously determined structures of phiX174 and alpha3. The structures of the capsid and spike proteins in the chimeric particle remain unchanged within experimental error when compared to the wild-type alpha3 virion proteins. The amino-terminal region of the phiX174 J protein, which is missing from wild-type alpha3 virions, is mostly disordered in the alpha3 chimera. The differences observed between solution properties of wild-type phiX174, wild-type alpha3, and alpha3 chimera, including their ability to attach to host cells, correlates with the degree of order in the amino-terminal domain of the J protein. When ordered, this domain binds to the interior of the viral capsid and, thus, might control the flexibility of the capsid. In addition, the properties of the phiX174 J protein in the chimera and the results of mutational analyses suggest that an evolutionary correlation may exist between the size of the J protein and the stoichiometry of the DNA pilot protein H, required in the initial stages of infection. Hence, the function of the J protein is to facilitate DNA packaging, as well as to mediate surface properties such as cell attachment and infection.  相似文献   

20.
Uracil, a promutagenic base in DNA can arise by spontaneous deamination of cytosine or incorporation of dUMP by DNA polymerase. Uracil is removed from DNA by uracil DNA glycosylase (UDG), the first enzyme in the uracil excision repair pathway. We recently reported that the Escherichia coli single-stranded DNA binding protein (SSB) facilitated uracil excision from certain structured substrates by E. coli UDG (EcoUDG) and suggested the existence of interaction between SSB and UDG. In this study, we have made use of the chimeric proteins obtained by fusion of N- and C-terminal domains of SSBs from E. coli and Mycobacterium tuberculosis to investigate interactions between SSBs and UDGs. The EcoSSB or a chimera containing its C-terminal domain interacts with EcoUDG in a binary (SSB-UDG) or a ternary (DNA-SSB-UDG) complex. However, the chimera containing the N-terminal domain from EcoSSB showed no interactions with EcoUDG. Thus, the C-terminal domain (48 amino acids) of EcoSSB is necessary and sufficient for interaction with EcoUDG. The data also suggest that the C-terminal domain (34 amino acids) of MtuSSB is a predominant determinant for mediating its interaction with MtuUDG. The mechanism of how the interactions between SSB and UDG could be important in uracil excision repair pathway has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号