首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A substantial body of evidence shows the capacity of the dopamine D3 receptor to couple functionally to G proteins when expressed in an appropriate milieu in heterologous expression systems. In these systems, activation of D3 receptors inhibits adenylate cyclase, modulates ion flow through potassium and calcium channels, and activates kinases, most notably mitogen-activated protein kinase. Coupling to Gi/Go is implicated in many of these effects, but other G proteins may contribute. Studies with chimeric receptors implicate the third intracellular loop in the mediation of agonist-induced signal transduction. Finally, D3-preferring drugs modulate expression of c-fos in neuronal cultures and brain. Signaling mechanisms of the D3 receptor in brain, however, remain to be definitively determined.  相似文献   

2.
The dopamine D2 receptor belongs to the serpentine superfamily of receptors, which have seven transmembrane segments and activate G proteins. D2 receptors are known to be linked, through Galpha(o)- and Galpha(i)-containing G proteins, to several signaling pathways in neuronal and secretory cells, including inhibition of adenylyl cyclase and high voltage-activated Ca2+ channels (HVA-CCs). The dopamine D2 receptor exists in two alternatively spliced isoforms, "long" and "short" (D2L, and D2S, respectively), which have identical ligand binding sites but differ by 29 amino acids in the third intracellular loop, the proposed site for G protein interaction. This has led to the speculation that the two isoforms may interact with different G proteins. We have transfected the AtT20 cell line with either D2L (KCL line) or D2S (KCS line) to facilitate experimentation on the individual isoforms. Both lines show dopamine agonist-dependent inhibition of Q-type HVA-CCs. We combined G protein antisense knock-down studies with multiwavelength fluorescence video microscopy to measure changes in HVA-CC inhibition to investigate the possibility of differential G protein coupling to this inhibition. The initial, rapid, K+ depolarization-induced increase in intracellular Ca2+ concentration is due to influx through HVA-CCs. Our studies reveal that both D2 isoforms couple to Galpha(o) to partially inhibit this influx. However, D2L also couples to Galpha(i)3, whereas D2S couples to Galpha(i)2. These data support the hypothesis of differential coupling of D2 receptor isoforms to G proteins.  相似文献   

3.
The diverse activities of dopamine D2-like receptors, including D2, D3, and D4 receptors, are mediated by proteins that interact with the third cytoplasmic loop and regulate receptor signaling, receptor trafficking, and apoptosis. Such interacting proteins include calmodulin, the N-methyl-d-aspartate receptor 2B subunit, calcium/calmodulin-dependent protein kinase II, prostate apoptosis response-4, and β-arrestins, which regulate receptor signaling and the pharmacological action through D2 receptor. The gene encoding the D2 receptor gives rise to two isoforms, termed the dopamine D2 receptor long isoform (D2L) and the dopamine D2 receptor short isoform; the latter lacks 29 amino acids of the D2L receptor within the third cytoplasmic loop. In this review, we first focus on novel functions of the hetero-oligomeric D1/D2 and D2/adenosine A2A receptors. We next discuss novel signaling through proteins interacting with the D2 receptor third cytoplasmic loop and define the function of a novel binding protein, heart-type fatty acid binding protein, which interacts with the D2L third cytoplasmic loop.  相似文献   

4.
In the present study, the functional significance of the intracellular C-terminal loop of the mu-opioid receptor in activating Gi proteins was determined by constructing a C-terminal deletion mutant mu(C delta 45) receptor, which lacks the carboxyl 45 amino acids. When the truncated mu(C delta 45) receptor was stably expressed in human embryonic kidney (HEK) 293 cells, the efficacy and the potency of [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO), a specific mu-opioid receptor agonist, to inhibit forskolin-stimulated adenylate cyclase activity were not significantly affected. Similar to other G-coupled receptors, the third cytoplasmic loop of the mu-opioid receptor contains conserved basic residues (R276/R277/R280) at the C-terminal segment. Mutating these basic residues to neutral amino acids (L276/M277/L280) greatly impaired the ability of DAMGO to inhibit forskolin-stimulated cyclic AMP formation. Replacing R276/R277 with L276/M277 did not affect the efficacy and potency by which DAMGO inhibits the adenylate cyclase activity. In HEK 293 cells stably expressing mutant (R280L) mu-opioid receptors, the ability of DAMGO to inhibit forskolin-stimulated cyclic AMP production was greatly reduced. These results suggest that the intracellular carboxyl tail of the mu-opioid receptor does not play a significant role in activating Gi proteins and that the arginine residue (R280) at the distal third cytoplasmic loop is required for Gi activation by the mu-opioid receptor.  相似文献   

5.
Filteau F  Veilleux F  Lévesque D 《FEBS letters》1999,447(2-3):251-256
The dopamine D3 receptor is a member of the G protein-coupled superfamily of receptors. However, its coupling with intracellular events is still not well understood. We have performed chimera constructions in which amino acid residues located in a region of the receptor involved in the coupling with second messengers (the C-terminal portion of the third intracellular loop) have been exchanged between dopamine D2 and D3 receptors. Chimera constructions did not modify substantially the pharmacological profiles, nor G protein coupling, as compared to their respective wild-type receptors. However, the D2 receptor chimera, containing the C-terminal portion of the third intracellular loop of the D3 receptor, has a lower potency to inhibit cyclic AMP production. The reciprocal construction generated a D3 receptor that is fully coupled to this second messenger pathway whereas, the native D3 receptor is uncoupled to this pathway in our transfected cells. These results suggest that the sequence selected is important for specific coupling characteristics shown by these two dopamine receptor homologues.  相似文献   

6.
D2 dopaminergic receptors: normal and abnormal transduction mechanisms.   总被引:3,自引:0,他引:3  
Dopamine receptors of D2 type present on lactotroph cells are coupled to a large series of transduction mechanisms. Beside their negative coupling with adenylate cyclase, they are also coupled with potassium and calcium channels, leading to a decreased intracellular calcium concentration. In addition, D2 dopamine receptors also modulate phospholipase activities. Dopamine inhibits inositol phosphate production, through two distinct mechanisms. One of them could represent a direct negative coupling with phospholipase C. All these transduction mechanisms of the D2 dopamine receptors implicate G proteins sensitive to pertussis toxin. In contrast, these receptors are negatively coupled to phospholipase A2 through G proteins insensitive to this toxin. Both isoforms of the D2 dopamine receptor, generated by alternate splicing of a single gene, are present in lactotroph cells. After transfection in CH4C1 cells the two isoforms are coupled with adenylate cyclase while only the shortest isoform appears negatively coupled to phospholipase C. Functional D2 dopamine receptors are present in human prolactinomas. Resistance to bromocriptine therapy is associated with a decreased density of these receptors in the tumor. In addition, the ratio of the two receptor isoforms (measured by PCR) is different in responsive and resistant tumors. Furthermore, the activity of Gi/Go proteins coupled to adenylate cyclase appears also affected in resistant tumors. Resistance to bromocriptine therapy appears thus to involve multiple changes at the different levels of the multiple mechanisms of action of dopamine on lactotroph cells.  相似文献   

7.
8.
In cultured rat striatal neurons exposed to 10 microM morphine or oxotremorine for 24 hours, we observed an increased (about 30%) dopamine D1 receptor-stimulated cyclic AMP production, whereas no desensitization of mu-opioid receptor or muscarinic cholinergic receptor was found. However, whereas upregulation of dopamine D1 receptor-stimulated adenylate cyclase activity upon 7 days morphine exposure was at least as pronounced as observed after 24 hours of exposure to the opioid, this adaptive phenomenon was virtually absent following one week of oxotremorine treatment. This reduced adenylate cyclase sensitization upon 7 days oxotremorine exposure appeared to coincide with desensitization of muscarinic cholinergic receptors. A possible role of the resistance of mu receptors to desensitization and the (resulting) upregulation of the neuronal adenylate cyclase system upon chronic receptor activation in the development of opiate tolerance and dependence is suggested.  相似文献   

9.
Dopamine receptors belong to the superfamily of G-protein-coupled receptors and are subdivided into D1-type (D1 and D5) and D2-type (D2, D3, and D4) receptors. The D4 receptor has a remarkable polymorphism in its third intracellular loop, which is under intensive investigation and which has been associated with, among other conditions, attention deficit hyperactivity disorder. Here, we demonstrate that KLHL12, a BTB-Kelch protein, specifically binds to this polymorphic region of the D4 receptor through its Kelch domain. Moreover, we show that KLHL12 also interacts with Cullin3 and thereby functions as an adaptor to target the D4 receptor to an E3 ubiquitin ligase complex. By ubiquitination assays in eukaryotic cells, we further demonstrate that overexpression of KLHL12 strongly promotes ubiquitination of the D4 receptor. In addition, we show that also other dopamine receptor subtypes undergo basal ubiquitination, but this is not affected by KLHL12. These data are the first to show ubiquitination of dopamine receptors and the first to identify a protein specifically interacting with the D4 polymorphism, thereby building up an E3 ligase complex with substrate specificity toward the D4 receptor.  相似文献   

10.
The glucagon receptor is a member of a distinct class of G protein-coupled receptors (GPCRs) sharing little amino acid sequence homology with the larger rhodopsin-like GPCR family. To identify the components of the glucagon receptor necessary for G-protein coupling, we replaced sequentially all or part of each intracellular loop (i1, i2, and i3) and the C-terminal tail of the glucagon receptor with the 11 amino acids comprising the first intracellular loop of the D4 dopamine receptor. When expressed in transiently transfected COS-1 cells, the mutant receptors fell into two different groups with respect to hormone-mediated signaling. The first group included the loop i1 mutants, which bound glucagon and signaled normally. The second group comprised the loop i2 and i3 chimeras, which caused no detectable adenylyl cyclase activation in COS-1 cells. However, when expressed in HEK 293T cells, the loop i2 or i3 chimeras caused very small glucagon-mediated increases in cAMP levels and intracellular calcium concentrations, with EC50 values nearly 100-fold higher than those measured for wild-type receptor. Replacement of both loops i2 and i3 simultaneously was required to completely abolish G protein signaling as measured by both cAMP accumulation and calcium flux assays. These results show that the i2 and i3 loops play a role in glucagon receptor signaling, consistent with recent models for the mechanism of activation of G proteins by rhodopsin-like GPCRs.  相似文献   

11.
A substantial body of evidence shows the capacity of the dopamine D3 receptor to couple functionally to G proteins when expressed in an appropriate milieu in heterologous expression systems. In these systems, activation of D3 receptors inhibits adenylate cyclase, modulates ion flow through potassium and calcium channels, and activates kinases, most notably mitogen-activated protein kinase. Coupling to Gi/Go is implicated in many of these effects, but other G proteins may contribute. Studies with chimeric receptors implicate the third intracellular loop in the mediation of agonist-induced signal transduction. Finally, D3-preferring drugs modulate expression of c-fos in neuronal cultures and brain. Signaling mechanisms of the D3 receptor in brain, however, remain to be definitively determined.  相似文献   

12.
Summary Physiological, pharmacological, histochemical and biochemical studies indicate that dopamine receptors are heterogenous in the, central nervous system with each individual functions. This review describes pharmacological and biochemical characteristics of dopamine receptors, particularly in canine caudate nucleus, which have been studied in our laboratory with a brief comparison to the current studies by other workers in similar research fields.Two distinct dopamine receptors have been characterized by means of [3H]dopamine binding to the synaptic membranes from canine caudate nucleus. One of the receptors with a Kd of about 3 M for dopamine may be associated with adenylate cyclase and referred to as D, receptor. The other receptor with a Kd of about 10 nM for dopamine is independent of adenylate cyclase and referred to as D2. A photochemical irreversible association of [3H]dopamine with the membraneous receptors makes it possible to separate D1 and D2 receptors from one another by gel filtration on a Sephadex G-200 column after solubilization with Lubrol PX. On the basis of selective inhibition of [3H]dopamine binding to D1 and D2 receptors, dopamine antagonists can be classified into three classes: D1-selective (YM-09151-2), D2-selective (sulpiride) and nonselective (haloperidol, chlorpromazine). Effects of these typical antagonists on the metabolism of rat brain dopamine suggest that D1 receptor is more closely associated with the neuroleptic-induced increase in dopamine turnover. Studies with 28 benzamide derivatives and some classical neuroleptics reveal that apomorphine-induced stereotypy displays a greater association with D1 than with D2 receptors.Dopamine-sensitive adenylate cyclase in canine caudate nucleus can be solubilized with Lubrol PX in a sensitive form to either dopamine, Gpp(NH)p or fluoride. Sephadex G-200 gel filtration separates adenylate cyclase from D1 receptors with a concomitant loss of dopamine sensitivity. Addition of the D1 receptor fraction to the adenylate cyclase restores the responsiveness to dopamine. The solubilized dopamine-unresponsive adenylate cyclase can be further separated into two distinct fractions by a batch-wise treatment with GTP-sepharose: a catalytic unit which does not respond to fluoride, and a guanine nucleotide regulatory protein. The regulatory protein confers distinct responsiveness to Gpp(NH)p and fluoride upon adenylate cyclase. These results indicate that dopamine-sensitive adenylate cyclase is composed of at least three distinct units; D1 receptor, guanine nucleotide regulatory protein and adenylate cyclase.  相似文献   

13.
Abstract: Neural retina from most species contains 3,4-dihydroxyphenylethylamine (dopamine) receptors coupled to stimulation of adenylate cyclase activity. It has been demonstrated that release of dopamine from its neurons and subsequent occupation of dopamine receptors is increased by light. In this study, we have shown that adenylate cyclase activity in bovine retina is highly responsive to the endogenous Ca2+-binding protein, cal-modulin, and that calmodulin can increase dopamine-sen-sitive adenylate cyclase activity in bovine retina. We further demonstrate that both dopamine- and calmodulin-stimulated adenylate cyclase activities can be regulated by alterations in light. Bovine retinas were dissected from the eye under a low-intensity red safety light, defined as dark conditions, and incubated for 20 min in an oxygenated Krebs Henseleit buffer under either dark or light conditions. The retinas were then homogenized and adenylate cyclase activity measured in a paniculate fraction washed to deplete it of endogenous Ca2+ and calmodulin. Activation of adenylate cyclase activity by calmodulin, dopamine, and the nonhydrolyzable GTP analog, gua-nosine-5′-(β,γ-imido)triphosphate (GppNHp), was significantly (60%) greater in paniculate fractions from retinas that had been incubated under dark conditions as compared to those incubated under light conditions. Basal, Mn2+-, and GTP-stimulated adenylate cyclase activities were not altered by changes in lighting conditions. Calmodulin could increase the maximum stimulation of adenylate cyclase by dopamine in retinas incubated under either dark or light conditions, but the degree of its effect was greater in retinas incubated under light conditions. Activation of adenylate cyclase by calmodulin, dopamine, and GppNHp in paniculate fractions from retinas incubated under light conditions was indistinguishable from the activation obtained when retinas were incubated in the dark in the presence of exogenous dopamine. These results suggest that an increased release of dopamine occurs in light. The decreased response of adenylate cyclase to exogenous dopamine can then be explained by a subsequent down-regulation of dopamine receptor activity. The down-regulation of dopamine receptor activity can also regulate activation of adenylate cyclase by GppNHp and calmodulin. The results suggest that dopamine, calmodulin, and GppNHp are modulators of a common component of adenylate cyclase activity, and this component is regulated by light.  相似文献   

14.
Dopamine receptor signaling   总被引:13,自引:0,他引:13  
  相似文献   

15.
Primary cultures of mouse embryonic neuronal or glial cells from the cerebral cortex, striatum, and mesencephalon were used to identify and determine the cellular localization of somatostatin receptors coupled to an adenylate cyclase. Somatostatin inhibited basal adenylate cyclase activity on neuronal but not on glial crude membranes in the three structures examined. The somatostatin-inhibitory effect on neuronal crude membranes was still observed in the presence of (-)-isoproterenol, 3,4-dihydroxyphenylethylamine (dopamine, DA), or 5-hydroxytryptamine (5-HT, serotonin) used at a concentration (10(-5) M) inducing maximal adenylate cyclase activation. In addition, in most cases biogenic amines modified the pattern of the somatostatin-inhibitory effect, triggering either an increase in the peptide apparent affinity for its receptors or an increase in the maximal reduction of adenylate cyclase activity or both. However, 5-HT did not modify the somatostatin-inhibitory response on striatal and cortical neuronal crude membranes. The changes in somatostatin-inhibitory responses were interpreted as a colocalization of the amine and the peptide receptors on subtypes of neuronal cell populations. Finally, somatostatin was shown to inhibit adenylate cyclase activity following its activation by (-)-isoproterenol on glial crude membranes of the striatum and the mesencephalon but not on those of the cerebral cortex.  相似文献   

16.
J L Plassat  U Boschert  N Amlaiky    R Hen 《The EMBO journal》1992,11(13):4779-4786
Serotonin (5-HT) is a neuromodulator that mediates a wide range of physiological functions by activating multiple receptors. Using a strategy based on amino acid sequence homology between 5-HT receptors that interact with G proteins, we have isolated a cDNA encoding a new serotonin receptor from a mouse brain library. Amino acid sequence comparisons revealed that this receptor was a distant relative of all previously identified 5-HT receptors; we therefore named it 5HT5. When expressed in Cos-7 cells and NIH-3T3 cells, the 5HT5 receptor displayed a high affinity for the serotonergic radioligand [125I]LSD. Surprisingly, its pharmacological profile resembled that of the 5HT1D receptor, which is a 5-HT receptor subtype which has been shown to inhibit adenylate cyclase and which is predominantly expressed in basal ganglia. However, unlike 5HT1D receptors, the 5HT5 receptor did not inhibit adenylate cyclase and its mRNA was not found in basal ganglia. On the contrary, in situ hybridization experiments revealed that the 5HT5 mRNA was expressed predominantly in cerebral cortex, hippocampus, habenula, olfactory bulb and granular layer of the cerebellum. Our results therefore demonstrate that the 5HT1D receptors constitute a heterogeneous family of receptors with distinct intracellular signalling properties and expression patterns.  相似文献   

17.
The vasoactive intestinal polypeptide (VIP) VPAC1 receptor is preferentially coupled to Galphas protein that stimulates adenylate cyclase activity and also to Galphaq and Galphai proteins that stimulate the inositol phosphate/calcium pathway. Previous studies indicated the importance of the third intracellular loop of the receptor for G protein coupling. By site-directed mutation of the human recombinant receptor expressed in Chinese hamster ovary cells, we identified two domains in this loop that contain clusters of basic residues conserved in most of the G-protein-coupled seven transmembrane domains receptors. We found that mutations in the proximal domain (K322) reduced the capability of VIP to increase adenylate cyclase activity without any change in the calcium response, whereas mutations in the distal part of the loop (R338, L339, R341) markedly reduced the calcium increase and Galphai coupling but only weakly the adenylate cyclase activity. Thus, the interaction of different G proteins with the VPAC1 receptor involves different receptor sub-domains.  相似文献   

18.
Using site-directed mutagenesis of the human beta 2-adrenergic receptor and continuous expression in B-82 cells, the role of 3 conserved cysteines in transmembrane domains and 2 conserved cysteines in the third extracellular domain in receptor function was examined. Cysteine was replaced with serine in each mutant receptor as this amino acid is similar to cysteine in size but it cannot form disulfide linkages. Replacement of cysteine residues 77 and 327, in the second and seventh transmembrane-spanning domains, respectively, had no effect on ligand binding or the ability of the receptor to mediate isoproterenol stimulation of adenylate cyclase. Substitution of cysteine 285, in the sixth transmembrane domain of the receptor, produced a mutant receptor with normal ligand-binding properties but a significantly attenuated ability to mediate stimulation of adenylate cyclase. Mutation of cysteine residues 190 and 191, in the third extracellular loop of the beta 2 receptor, had qualitatively similar effects on ligand binding and isoproterenol-mediated stimulation of adenylate cyclase. Replacement of either of these residues with serine produced mutant receptors that displayed a marked loss in affinity for both beta-adrenergic agonists and antagonists. Replacement of both cysteine 190 and 191 with serine had an even greater effect on the ability of the receptor to bind ligands. Consistent with the loss of Ser190 and/or Ser191 mutant receptor affinity for agonists was a corresponding shift to the right in the dose-response curve for isoproterenol-induced increases in intracellular cyclic AMP concentrations in cells expressing the mutant receptors. These data implicate one of the conserved transmembrane cysteine residues in the human beta 2-adrenergic receptor in receptor activation by agonists and also suggest that conserved cysteine residues in an extracellular domain of the receptor may be involved in ligand binding.  相似文献   

19.
20.
The dopamine D2 receptor (D2R) is target for antipsychotic drugs and associated with several neuropsychiatric disorders. D2R has a long third cytoplasmic loop and a short carboxyl-terminal cytoplasmic tail. It exists as two alternatively spliced isoforms, termed D2LR and D2SR, which differ in the presence and absence, respectively, of a 29 amino acid insert in the third cytoplasmic loop. To evaluate the differential roles of the two D2R isoforms, we transfected both isoforms into NG108-15 cells and observed their subcellular localization by a confocal laser scanning light microscope. D2SR was predominantly localized at the plasma membrane, whereas D2LR was mostly retained in the perinuclear region around the Golgi apparatus. Using a yeast two hybrid system with a mouse brain cDNA library and coimmunoprecipitation assay, we found that heart-type fatty acid binding protein (H-FABP) interacts with D2LR but not with D2SR. H-FABP is a cytosolic protein involved in binding and transport of fatty acids. Overexpressed H-FABP and endogenous H-FABP were colocalized with the intracellular D2LR in NG108-15 cells. Furthermore, in the rat striatum, H-FABP was detected in the D2R-expressing neurons. From these results, H-FABP is associated with D2LR, and may thereby modulate the subcellular localization and function of D2LR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号