首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The β subunits of voltage-dependent calcium channels bind the pore-forming α1 subunit and play an important role in the regulation of calcium channel function. Recently, we have identified a new splice variant of the β4 subunit, which we have termed the β4d subunit. The β4d subunit is a truncated splice variant of the β4b subunit and lacks parts of the guanylate kinase (GK) domain and the C-terminus. The calcium current in BHK cells expressing α1C and α2δ with the β4d subunit was as small as that without the β4d subunit. Western blot analysis revealed that β4d protein was expressed to a lesser extent that the β4b protein. In addition, a GST pull down assay showed that the β4d subunit could not interact with the α1 subunit of the calcium channel. Collectively, our results suggest that the GK domain of the β subunit is essential for the expression of the functional calcium channel.  相似文献   

2.
The human platelet alpha 2-adrenergic receptor is an integral membrane protein which binds epinephrine. The gene for this receptor has been cloned, and the primary structure is thus known [Kobilka et al. (1987) Science 238, 650-656]. A model of its secondary structure predicts that the receptor has seven transmembrane spanning domains. By covalent labeling and peptide mapping, we have identified a region of the receptor that is directly involved with ligand binding. Partially purified preparations of the receptor were covalently radiolabeled with either of two specific photoaffinity ligands: [3H]SKF 102229 (an antagonist) or p-azido[3H]clonidine (an agonist). The radiolabeled receptors were then digested with specific endopeptidases, and peptides containing the covalently bound radioligands were identified. Lysylendopeptidase treatment of [3H]SKF 102229 labeled receptor yielded one peptide of Mr 2400 as the product of a complete digest. Endopeptidase Arg-C gave a labeled peptide of Mr 4000, which was further digested to the Mr 2400 peptide by additional treatment with lysylendopeptidase. Using p-azido[3H]clonidine-labeled receptor, a similar Mr 2400 peptide was obtained by lysylendopeptidase cleavage. This Mr 2400 peptide corresponds to the fourth transmembrane spanning domain of the receptor. These data suggest that this region forms part of the ligand binding domain of the human platelet alpha 2-adrenergic receptor.  相似文献   

3.
To analyze the basis of affinity modulation of integrin function, we studied cloned stable Chinese hamster ovary cell lines expressing recombinant integrins of the beta 3 family (alpha IIb beta 3 and alpha v beta 3). Antigenic and peptide recognition specificities of the recombinant receptors resembled those of the native receptors found in platelets or endothelial cells. The alpha IIb beta 3-expressing cell line (A5) bound RGD peptides and immobilized fibrinogen (Fg) but not soluble fibrinogen or the activation-specific monoclonal anti-alpha IIb beta 3 (PAC1), indicating that it was in the affinity state found on resting platelets. Several platelet agonists failed to alter the affinity state of ("activate") recombinant alpha IIb beta 3. The binding of soluble Fg and PAC1, however, was stimulated in both platelets and A5 cells by addition of IgG papain-digestion products (Fab) fragments of certain beta 3-specific monoclonal antibodies. These antibodies stimulated PAC1 binding to platelets fixed under conditions rendering them unresponsive to other agonists. Addition of these antibodies to detergent-solubilized alpha IIb beta 3 also stimulated specific Fg binding. These data demonstrate that certain anti-beta 3 antibodies activate alpha IIb beta 3 by acting directly on the receptor, possibly by altering its conformation. Furthermore, they indicate that the activation state of alpha IIb beta 3 is a property of the receptor itself rather than of the surrounding cell membrane microenvironment.  相似文献   

4.
Integrin beta subunits contain a highly conserved I-like domain that is known to be important for ligand binding. Unlike integrin I domains, the I-like domain requires integrin alpha and beta subunit association for optimal folding. Pactolus is a novel gene product that is highly homologous to integrin beta subunits but lacks associating alpha subunits [Chen, Y., Garrison, S., Weis, J. J., and Weis, J. H. (1998) J. Biol. Chem. 273, 8711-8718] and a approximately 30 amino acid segment corresponding to the specificity-determining loop (SDL) in the I-like domain. We find that the SDL is responsible for the defects in integrin beta subunit expression and folding in the absence of alpha subunits. When transfected in the absence of alpha subunits into cells, extracellular domains of mutant beta subunits lacking SDL, but not wild-type beta subunits, were well secreted and contained immunoreactive I-like domains. The purified recombinant soluble beta1 subunit with the SDL deletion showed an elongated shape in electron microscopy, consistent with its structure in alphabeta complexes. The SDL segment is not required for formation of alpha5beta1, alpha4beta1, alphaVbeta3, and alpha6beta4 heterodimers, but is essential for fomation of alpha6beta1, alphaVbeta1, and alphaLbeta2 heterodimers, suggesting that usage of subunit interface residues is variable among integrins. The beta1 SDL is required for ligand binding and for the formation of the epitope for the alpha5 monoclonal antibody 16 that maps to loop segments connecting blades 2 and 3 of beta-propeller domain of alpha5, but is not essential for nearby beta-propeller epitopes.  相似文献   

5.
Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the alpha subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K(d) of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site.  相似文献   

6.
The ligand binding domain (LBD) of the nicotinic acetylcholine receptor has served as a prototype for understanding molecular recognition in the family of neurotransmitter-gated ion channels. During the past fifty years, studies progressed from fundamental electrophysiological analyses of ACh-evoked ion flow, to biochemical purification of the receptor protein, pharmacological measurements of ligand binding, molecular cloning of receptor subunits, site-directed mutagenesis combined with functional analysis and recently, atomic structural determination. The emerging picture of the nicotinic receptor LBD is a specialized pocket of aromatic and hydrophobic residues formed at interfaces between protein subunits that changes conformation to convert agonist binding into gating of an intrinsic ion channel.  相似文献   

7.
Rotaviruses utilize integrins during virus-cell interactions that lead to infection. Cell binding and infection by simian rotavirus SA11 were inhibited by antibodies (Abs) to the inserted (I) domain of the alpha2 integrin subunit. To determine directly which integrins or other proteins bind rotaviruses, cell surface proteins precipitated by rotaviruses were compared with those precipitated by anti-alpha2beta1 Abs. Two proteins precipitated by SA11 and rhesus rotavirus RRV from MA104 and Caco-2 cells migrated indistinguishably from alpha2beta1 integrin, and SA11 precipitated beta1 from alpha2beta1-transfected CHO cells. These viruses specifically precipitated two MA104 cell proteins only, but an additional 160- to 165-kDa protein was precipitated by SA11 from Caco-2 cells. The role of the alpha2 I domain in rotavirus binding, infection, and growth was examined using CHO cell lines expressing wild-type or mutated human alpha2 or alpha2beta1. Infectious SA11 and RRV, but not human rotavirus Wa, specifically bound CHO cell-expressed human alpha2beta1 and, to a lesser extent, human alpha2 combined with hamster beta1. Binding was inhibited by anti-alpha2 I domain monoclonal Abs (MAbs), but not by non-I domain MAbs to alpha2, and required the presence of the alpha2 I domain. Amino acid residues 151, 221, and 254 in the metal ion-dependent adhesion site of the alpha2 I domain that are necessary for type I collagen binding to alpha2beta1 were not essential for rotavirus binding. Rotavirus-alpha2beta1 binding led to increased virus infection and RRV growth. SA11 and RRV require the alpha2 I domain for binding to alpha2beta1, and their binding to this integrin is distinguishable from that of collagen.  相似文献   

8.
9.
Molecular dynamics simulations of a homology model of the ligand binding domain of the alpha7 nicotinic receptor are conducted with a range of bound ligands to induce different conformational states. Four simulations of 15 ns each are run with no ligand, antagonist d-tubocurarine (dTC), agonist acetylcholine (ACh), and agonist ACh with potentiator Ca(2+), to give insight into the conformations of the active and inactive states of the receptor and suggest the mechanism for conformational change. The main structural factor distinguishing the active and inactive states is that a more open, symmetric arrangement of the five subunits arises for the two agonist simulations, whereas a more closed and asymmetric arrangement results for the apo and dTC cases. Most of the difference arises in the lower portion of the ligand binding domain near its connection to the adjacent transmembrane domain. The transfer of the more open state to the transmembrane domain could then promote ion flow through the channel. Variation in how subunits pack together with no ligand bound appears to give rise to asymmetry in the apo case. The presence of dTC expands the receptor but induces rotations in alternate directions in adjacent subunits that lead to an asymmetric arrangement as in the apo case. Ca(2+) appears to promote a slightly greater expansion in the subunits than ACh alone by stabilizing the C-loop and ACh positions. Although the simulations are unlikely to be long enough to view the full conformational changes between open and closed states, a collection of different motions at a range of length scales are observed that are likely to participate in the conformational change.  相似文献   

10.
This work characterizes a mutant integrin alpha IIb beta 3 (glycoprotein (GP) IIb-IIIa) from a thrombasthenic patient, ET, whose platelets fail to aggregate in response to stimuli. The nature of defect was defined by the reduced ability of synthetic peptide ligands, corresponding to the carboxyl terminus of the fibrinogen gamma chain (gamma 402-411) and Arg-Gly-Asp (RGD), to increase the binding of the occupancy-dependent anti-LIBS1 antibody to mutant alpha IIb beta 3 and the reduced binding of mutant alpha IIb beta 3 to an immobilized RGD peptide. In addition, ET's platelets failed to bind the ligand-mimetic monoclonal anti-alpha IIb beta 3, PAC1. DNA sequence analysis of amplified ET genomic DNA revealed a single G----A base change which encoded substitution of R214 by Q in mature beta 3. Introduction of this point mutation into recombinant wild type alpha IIb beta 3 expressed in Chinese hamster ovary cells reproduced the ET platelet alpha IIb beta 3 deficits in binding of fibrinogen, mAb PAC1, and synthetic peptide ligands. Furthermore, substitution of R214 by Q in the synthetic peptide containing the sequence of beta 3(211-222) resulted in decreased ability of this peptide to block fibrinogen binding to purified alpha IIb beta 3. These findings suggest that substitution of beta 3 R214 by Q is responsible for the functional defect in alpha IIb beta 3 and that R214 is proximal to or part of a ligand binding domain in alpha IIb beta 3.  相似文献   

11.
The acetylcholine-binding sites on the native, membrane-bound acetylcholine receptor from Torpedo marmorata were covalently labeled with the photoaffinity reagent [3H]-p-(dimethylamino)-benzenediazonium fluoroborate (DDF) in the presence of phencyclidine by employing an energy-transfer photolysis procedure. The alpha-chains isolated from receptor-rich membranes photolabeled in the absence or presence of carbamoylcholine were cleaved with CNBr and the radiolabeled fragments purified by high-performance liquid chromatography. Amino acid and/or sequence analysis demonstrated that the alpha-chain residues Trp-149, Tyr-190, Cys-192, and Cys-193 and an unidentified residue(s) in the segment alpha 31-105 were all labeled by the photoaffinity reagent in an agonist-protectable manner. The labeled amino acids are located within three distinct regions of the large amino-terminal hydrophilic domain of the alpha-subunit primary structure and plausibly lie in proximity to one another at the level of the acetylcholine-binding sites in the native receptor. These findings are in accord with models proposed for the transmembrane topology of the alpha-chain that assign the amino-terminal segment alpha 1-210 to the synaptic cleft. Furthermore, the results suggest that the four identified [3H]DDF-labeled residues, which are conserved in muscle and neuronal alpha-chains but not in the other subunits, may be directly involved in agonist binding.  相似文献   

12.
A segment of inositol 1,4,5-trisphosphate 3-kinase responsible for inositol 1,4,5-trisphosphate (InsP(3)) binding was characterized and confirmed by three different approaches employing the fully active expressed catalytic domain of the enzyme. Part of this moiety was protected from limited tryptic proteolysis by InsP(3). Sequencing of two fragments of 16 and 21 kDa, generated in the absence or presence of InsP(3), respectively, identified segment Glu-271 to Arg-305 as being protected. 15 monoclonal antibodies, all binding to epitopes within this region, inhibited enzyme activity and interfered with inositol phosphate binding. Detailed enzyme kinetic parameters of 32 site-directed mutants revealed residues Arg-276 and Lys-303 in this segment and Arg-322, located nearby, as directly involved in and five other closely neighbored residues, all located within a segment of 73 amino acids, as also influencing InsP(3) binding. Part of this region is similar in sequence to an InsP(3) binding segment in InsP(3) receptors. Combined with the finding that mutants influencing only ATP binding all lie outside this region, these data indicate that an InsP(3) binding core domain is inserted between two segments acting together in ATP binding and phosphate transfer.  相似文献   

13.
《The Journal of cell biology》1993,123(4):1017-1025
The alpha 6 beta 1 integrin is expressed on the macrophage surface in an inactive state and requires cellular activation with PMA or cytokines to function as a laminin receptor (Shaw, L. M., J. M. Messier, and A. M. Mercurio. 1990. J. Cell Biol. 110:2167-2174). In the present study, the role of the alpha 6 subunit cytoplasmic domain in alpha 6 beta 1 integrin activation was examined. The use of P388D1 cells, an alpha 6-integrin deficient macrophage cell line, facilitated this analysis because expression of either the alpha 6A or alpha 6B subunit cDNAs restores their activation responsive laminin adhesion (Shaw, L. S., M. Lotz, and A. M. Mercurio. 1993. J. Biol. Chem. 268:11401-11408). A truncated alpha 6 cDNA, alpha 6-delta CYT, was constructed in which the human cytoplasmic domain sequence was deleted after the GFFKR pentapeptide. Expression of this cDNA in P388D1 cells resulted in the surface expression of a chimeric alpha 6-delta CYT beta 1 integrin that was unable to mediate laminin adhesion or increase this adhesion in response to PMA under normal conditions, i.e., in medium that contained physiological concentrations of Ca++ and Mg++. The alpha 6A-delta CYT transfectants adhered to laminin, however, when Ca++/Mg++ was replaced with 150 microM Mn++. We also assessed the role of serine phosphorylation in the regulation of alpha 6A beta 1 integrin function by site-directed mutagenesis of the two serine residues present in the alpha 6A cytoplasmic domain because this domain is phosphorylated on serine residues in response to stimuli that activate the laminin receptor function of alpha 6 A beta 1. Point mutations were introduced in the alpha 6A cDNA that changed either serine residue #1064 (M1) or serine residue #1071 (M2) to alanine residues. In addition, a double mutant (M3) was constructed in which both serine residues were changed to alanine residues. P388D1 transfectants which expressed these serine mutations adhered to laminin in response to PMA to the same extent as cells transfected with wild-type alpha 6A cDNA. These findings provide evidence for a novel mode of integrin regulation that is distinct from that reported for other regulated integrins (O'Toole, T. E., D. Mandelman, J. Forsyth, S. J. Shattil, E. F. Plow, and M. H. Ginsberg. 1991. Science (Wash. DC). 254:845-847. Hibbs, M. L., H. Xu, S. A. Stacker, and T. A. Springer. 1991. Science (Wash. DC). 251:1611-1613), and they demonstrate that serine phosphorylation of the alpha 6A cytoplasmic domain is not involved in this regulation.  相似文献   

14.
alpha 1-Adrenergic receptors from a cultured smooth muscle cell line (DDT1 MF-2) have been solubilized with digitonin and purified to apparent homogeneity by sequential chromatography on a biospecific affinity support (Sepharose-A55453 (4-amino-6,7-dimethoxy-2-[4-[5-(4-amino-3-phenyl) pentanoyl]-1-piperazinyl]-quinazoline), an alpha 1 receptor-selective antagonist), a wheat germ agglutinin-agarose gel, and a high performance steric exclusion liquid chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveals a peptide with an apparent Mr = 80,000 that co-migrates with the peptide labeled by the specific alpha 1-adrenergic receptor photoaffinity probe 4-amino-6,7-dimethoxy-2-[4-[5-(4-azido-3-[125I]iodophenyl)pentanoyl] -1-piperazinyl] quinazoline. The specific activity (approximately 13,600 pmol of ligand binding/mg of protein) of purified receptor preparations is consistent with that expected for a pure peptide of Mr = 80,000 containing a single ligand binding site. Overall yields approximate 14% of initial crude particulate binding. The purified receptor preparations bind agonist and antagonist ligands with appropriate alpha 1-adrenergic specificity, stereoselectivity, and affinity. Peptide maps of the pure alpha 1-adrenergic receptor and the pure human platelet alpha 2-adrenergic receptor (Regan, J.W., Nakata, H., DeMarinis, R.M., Caron, M.G., and Lefkowitz, R.J. (1986) J. Biol. Chem. 261, 3894-3900) using several different proteases suggest that these two receptors show little if any structural homology.  相似文献   

15.
Integrin transmembrane (TM) and/or cytoplasmic domains play a critical role in integrin bidirectional signaling. Although it has been shown that TM and/or cytoplasmic α and β domains associate in the resting state and separation of these domains is required for both inside-out and outside-in signaling, the role of TM homomeric association remains elusive. Formation of TM homo-oligomers was observed in micelles and bacterial membranes previously, and it has been proposed that homomeric association is important for integrin activation and clustering. This study addresses whether integrin TM domains form homo-oligomers in mammalian cell membranes using cysteine scanning mutagenesis. Our results show that TM homomeric interaction does not occur before or after soluble ligand binding or during inside-out activation. In addition, even though the cysteine mutants and the heterodimeric disulfide-bounded mutant could form clusters after adhering to immobilized ligand, the integrin TM domains do not form homo-oligomers, suggesting that integrin TM homomeric association is not critical for integrin clustering or outside-in signaling. Therefore, integrin TM homo-oligomerization is not required for integrin activation, ligand binding, or signaling.  相似文献   

16.
Integrin adhesion receptors appear to be regulated by molecules that bind to their cytoplasmic domains. We previously identified a 22-kDa, EF-hand-containing protein, CIB, which binds to the alpha(IIb) cytoplasmic tail of the platelet integrin, alpha(IIb)beta(3). Here we describe regions within CIB and alpha(IIb) that interact with one another. CIB binding to alpha(IIb) cytoplasmic tail peptides, as measured by intrinsic tryptophan fluorescence, indicates a CIB-binding site within a hydrophobic, 15-amino acid, membrane-proximal region of alpha(IIb). This region is analogous to the alpha-helical targets of other EF-hand-containing proteins, such as calcineurin B or calmodulin. A homology model of CIB based upon calcineurin B and recoverin indicated a conserved hydrophobic pocket within the C-terminal EF-hand motifs of CIB as a potential integrin-binding site. CIB engineered to contain alanine substitutions in the implicated regions retained wild type secondary structure as determined by circular dichroism, yet failed to bind alpha(IIb) in 11 of 12 cases, whereas CIB mutated within the N terminus retained binding activity. Thus, specific hydrophobic residues in the C terminus of CIB appear necessary for CIB binding to alpha(IIb). The identification of essential interacting regions within alpha(IIb) and CIB provides tools for further probing potential interrelated functions of these proteins.  相似文献   

17.
The NH(2)-terminal portion (putative ligand-binding domain) of alpha subunits contains 7 homologous repeats, the last 3 or 4 of which possess divalent cation binding sequences. These repeats are predicted to form a seven-bladed beta-propeller structure. To map ligand recognition sites on the alpha(5) subunit we have taken the approach of constructing and expressing alpha(V)/alpha(5) chimeras. Although the NH(2)-terminal repeats of alpha(5) and alpha(V) are >50% identical at the amino acid level, alpha(5)beta(1) and alpha(V)beta(1) show marked differences in their ligand binding specificities. Thus: (i) although both integrins recognize the Arg-Gly-Asp (RGD) sequence in fibronectin, the interaction of alpha(5)beta(1) but not of alpha(V)beta(1) with fibronectin is strongly dependent on the "synergy" sequence Pro-His-Ser-Arg-Asn; (ii) alpha(5)beta(1) binds preferentially to RGD peptides in which RGD is followed by Gly-Trp (GW) whereas alpha(V)beta(1) has a broader specificity; (iii) only alpha(5)beta(1) recognizes peptides containing the sequence Arg-Arg-Glu-Thr-Ala-Trp-Ala (RRETAWA). Therefore, amino acid residues involved in ligand recognition by alpha(5)beta(1) can potentially be identified in gain-of-function experiments by their ability to switch the ligand binding properties of alpha(V)beta(1) to those of alpha(5)beta(1). By introducing appropriate restriction enzyme sites, or using site-directed mutagenesis, parts of the NH(2)-terminal repeats of alpha(V) were replaced with the corresponding regions of the alpha(5) subunit. Chimeric subunits were expressed on the surface of Chinese hamster ovary-B2 cells (which lack endogenous alpha(5)) as heterodimers with hamster beta(1). Stable cell lines were generated and tested for their ability to attach to alpha(5)beta(1)-selective ligands. Our results demonstrate that: (a) the first three NH(2)-terminal repeats contain the amino acid sequences that determine ligand binding specificity and the same repeats include the epitopes of function blocking anti-alpha subunit mAbs; (b) the divalent cation-binding sites (in repeats 4-7) do not confer alpha(5)beta(1)- or alpha(V)beta(1)-specific ligand recognition; (c) amino acid residues Ala(107)-Tyr(226) of alpha(5) (corresponding approximately to repeats 2 and 3) are sufficient to change all the ligand binding properties of alpha(V)beta(1) to those of alpha(5)beta(1); (d) swapping a small part of a predicted loop region of alpha(V) with the corresponding region of alpha(5) (Asp(154)-Ala(159)) is sufficient to confer selectivity for RGDGW and the ability to recognize RRETAWA.  相似文献   

18.
For the five principal prostanoids PGD2, PGE2, PGF2alpha, prostacyclin and thromboxane A2 eight receptors have been identified that belong to the family of G-protein-coupled receptors. They display an overall homology of merely 30%. However, single amino acids in the transmembrane domains such as an Arg in the seventh transmembrane domain are highly conserved. This Arg has been identified as part of the ligand binding pocket. It interacts with the carboxyl group of the prostanoid. The aim of the current study was to analyze the potential role in ligand binding of His-81 in the second transmembrane domain of the rat PGF2alpha receptor, which is conserved among all PGF2alpha receptors from different species. Molecular modeling suggested that this residue is located in close proximity to the ligand binding pocket Arg 291 in the 7th transmembrane domain. The His81 (H) was exchanged by site-directed mutagenesis to Gln (Q), Asp (D), Arg (R), Ala (A) and Gly (G). The receptor molecules were N-terminally extended by a Flag epitope for immunological detection. All mutant proteins were expressed at levels between 50% and 80% of the wild type construct. The H81Q and H81D receptor bound PGF2alpha with 2-fold and 25-fold lower affinity, respectively, than the wild type receptor. Membranes of cells expressing the H81R, H81A or H81G mutants did not bind significant amounts of PGF2alpha. Wild type receptor and H81Q showed a shallow pH optimum for PGF2alpha binding around pH 5.5 with almost no reduction of binding at higher pH. In contrast the H81D mutant bound PGF2alpha with a sharp optimum at pH 4.5, a pH at which the Asp side chain is partially undissociated and may serve as a hydrogen bond donor as do His and Gln at higher pH values. The data indicate that the His-81 in the second transmembrane domain of the PGF2alpha receptor in concert with Arg-291 in the seventh transmembrane domain may be involved in ligand binding, most likely not by ionic interaction with the prostaglandin's carboxyl group but rather as a hydrogen bond donor.  相似文献   

19.
Yu H  Alfsen A  Tudor D  Bomsel M 《Cell calcium》2008,43(1):73-82
The peptide of HIV-1 envelope gp41 (a.a 628-683), referred to herein as P5, contains P1, a conserved galactose-specific lectin domain for binding the mucosal HIV-1-receptor, galactosyl ceramide (GalCer), as shown earlier, and a potential calcium-binding site (a.a 628-648). P1 contains contiguous epitopes recognized by the broadly neutralizing antibodies 2F5, 4E10, Z13. However, similar neutralizing antibodies could not be raised in animal model using immunogens based on these epitopes. We now show that the structure of both P5 and P1 peptides, as measured by circular dichroism, differs according to their environment: aqueous or lipidic, and as a function of calcium concentration. P5, but not P1, binds to calcium with a low binding affinity constant in the order of 2.5x10(4). Calcium binding results in a conformational change of P5, leading in turn to a decrease in affinity for GalCer. Hence, the affinity of the gp41-lectin site for the galactose harbored by the mucosal HIV-1 receptor GalCer is modulated by the peptide secondary and tertiary structure and the local environment. Therefore, definition of the conformation of this novel extended gp41 membrane proximal region, containing the conserved peptide P1 and the Ca(2+) binding site, could help designing an immunogen efficient at inducing neutralizing anti-HIV-1 antibodies.  相似文献   

20.
Interleukin (IL)-15 is a member of the small four alpha-helix bundle family of cytokines. IL-15 was discovered by its ability to mimic IL-2-mediated T-cell proliferation. Both cytokines share the beta and gamma receptor chains of the IL-2 receptor for signal transduction. However, in addition, they target specific alpha chain receptors IL-15Ralpha and IL-2Ralpha, respectively. The exceptionally high affinity binding of IL-15 to IL-15Ralpha is mediated by its sushi domain. Here we present the solution structure of the IL-15Ralpha sushi domain solved by NMR spectroscopy and a model of its complex with IL-15. The model shows that, rather than the familiar hydrophobic forces dominating the interaction interface between cytokines and their cognate receptors, the interaction between the IL-15 and IL-15Ralpha complex involves a large network of ionic interactions. This type of interaction explains the exceptionally high affinity of the IL-15.IL-15Ralpha complex, which is essential for the biological effects of this important cytokine and which is not observed in other cytokine/cytokine receptor complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号