首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stable homogeneous ribonucleoprotein fragment of the 30 S ribosomal subunit of E. coli has been prepared by mild nuclease digestion and heating in a constant ionic environment. The fragment contains about half of the 16 S ribosomal RNa and six proteins: S4, S7, S9, S13, S16 and S19. The RNA moiety contains the reported binding sites of all six proteins. After deproteinization, 80% of the RNA migrated as two major electrophoretic bands, which were isolated and sequenced. Each band contained sequences from the 5' and 3' thirds of the 16 S RNA but none from the central third. That these two noncontiguous RNA domains migrated together electrophoretically in Mg++-containing gels after deproteinization constitutes direct evidence that the 16 S RNA is folded in the intact ribosome so as to bring the two domains close together and that there are RNA-RNA interactions between them in the presence of Mg++.  相似文献   

2.
The E. coli 16 S rRNA with single-site breaks centered at position 777 or 785 was obtained by RNase H site-specific cleavage of rRNA. Spontaneous dissociation of the cleaved 16 S rRNA into fragments occurred under 'native' conditions. The reassociation of the 16 S rRNA fragments was possible only in the presence of ribosomal proteins. The combination of S4 and S16(S17) ribosomal proteins interacting mainly with the 5'-end domain of 16 S rRNA was sufficient for reassociation of the fragments. The 30 S subunits with fragmented RNA at ca. 777 region retained some poly(U)-directed protein synthetic activity.  相似文献   

3.
Specific fragments of the 16 S ribosomal RNA of Escherichia coli have been isolated and tested for their ability to interact with proteins of the 30 S ribosomal subunit. The 12 S RNA, a 900-nucleotide fragment derived from the 5′-terminal portion of the 16 S RNA, was shown to form specific complexes with proteins S4, S8, S15, and S20. The stoichiometry of binding at saturation was determined in each case. Interaction between the 12 S RNA and protein fraction S16S17 was detected in the presence of S4, S8, S15 and S20; only these proteins were able to bind to this fragment, even when all 21 proteins of the 30 S subunit were added to the reaction mixture. Protein S4 also interacted specifically with the 9 S RNA, a fragment of 500 nucleotides that corresponds to the 5′-terminal third of the 16 S RNA, and protein S15 bound independently to the 4 S RNA, a fragment containing 140 nucleotides situated toward the middle of the RNA molecule. None of the proteins interacted with the 600-nucleotide 8 S fragment that arose from the 3′-end of the 16 S RNA.When the 16 S RNA was incubated with an unfractionated mixture of 30 S subunit proteins at 0 °C, 10 to 12 of the proteins interacted with the ribosomal RNA to form the reconstitution intermediate (RI) particle. Limited hydrolysis of this particle with T1 ribonuclease yielded 14 S and 8 S subparticles whose RNA components were indistinguishable from the 12 S and 8 S RNAs isolated from digests of free 16 S RNA. The 14 S subparticle contained proteins S6 and S18 in addition to the RNA-binding proteins S4, S8, S15, S20 and S16S17. The 8 S subparticle contained proteins S7, S9, S13 and S19. These findings serve to localize the sites at which proteins incapable of independent interaction with 16 S RNA are fixed during the early stages of 30 S subunit assembly.  相似文献   

4.
Specific binding sites for five proteins of the Escherichia coli 30S ribosomal subunit have been located within the 16S RNA. The sites are structurally diverse and range in size from 40 to 500 nucleotides; their functional integrity appears to depend upon both the secondary structure and conformation of the RNA molecule. Evidence is presented which indicates that additional proteins interact with the RNA at later stages of subunit assembly.  相似文献   

5.
An ethionine-containing submethylated particle related to the 50 S ribosomal subunit has been isolated from Escherichia coli grown in the presence of ethionine. This particle (E-50S) lacks L16, contains reduced amounts of L6, L27, L28 and L30 and possesses a more labile and flexible structure than the normal 50 S subunit. The E-50S particle has defective association properties and is incapable of peptide bond formation. It can be converted to an active 50 S ribosomal subunit when ethionine-treated bacteria are incubated under conditions which permit methylation of submethylated cellular components (presence of methionine) in the absence of de novo protein and RNA synthesis (presence of rifampicin).Total reconstitution of 50 S ribosomal subunits in vitro using normal 23 S and 5 S ribosomal RNA and proteins prepared from E-50S particles yields active subunits only if L16 is also added. The hypothesis that E-50S particles accumulate in ethionine-treated bacteria because the absence of methylation of one or more of their components blocks a late stage (L16 integration) in the normal 50 S assembly process is discussed.  相似文献   

6.
Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA.   总被引:11,自引:3,他引:8       下载免费PDF全文
Complexes between 16S rRNA and purified ribosomal proteins, either singly or in combination, were assembled in vitro and probed with hydroxyl radicals generated from free Fe(II)-EDTA. The broad specificity of hydroxyl radicals for attack at the ribose moiety in both single- and double-stranded contexts permitted probing of nearly all of the nucleotides in the 16S rRNA chain. Specific protection of localized regions of the RNA was observed in response to assembly of most of the ribosomal proteins. The locations of the protected regions were in good general agreement with the footprints previously reported for base-specific chemical probes, and with sites of RNA-protein crosslinking. New information was obtained about interaction of ribosomal proteins with 16S rRNA, especially with helical elements of the RNA. In some cases, 5' or 3' stagger in the protection pattern on complementary strands suggests interaction of proteins with the major or minor groove, respectively, of the RNA. These results reinforce and extend previous data on the localization of ribosomal proteins with respect to structural features of 16S rRNA, and offer many new constraints for three-dimensional modeling of the 30S ribosomal subunit.  相似文献   

7.
Proteins from the 30 S ribosomal subunit of Escherichia coli were fractionated by column chromatography and individually incubated with 16 S ribosomal RNA. Stable and specific complexes were formed between proteins S4, S7, S8, S15 and S20, and the 16 S RNA. Protein S13 and one or both proteins of the S16S17 mixture bound more weakly to the RNA, although these interactions too were apparently specific. The binding of S16S17 was found to be markedly stimulated by proteins S4, S8, S15 and S20. Limited digestion of the RNA-protein complexes with T1 or pancreatic ribonucleases yielded a variety of partially overlapping RNA fragments, which retained one or more of the proteins. Since similar fragments were recovered when 16 S RNA alone was digested under the same conditions, their stability could not be accounted for by the presence of bound protein. The integrity of the fragments was, however, strongly influenced by the magnesium ion concentration at which ribonuclease digestion was carried out. Each of the RNA fragments was characterized by fingerprinting and positioned within the sequence of the 1600-nucleotide 16 S RNA molecule. The location of ribosomal protein binding sites was delimited by the pattern of fragments to which a given protein bound. The binding sites for proteins S4, S8, S15, S20 and, possibly, S13 and S16S17 as well, lie within the 5′-terminal half of the 16 S RNA molecule. In particular, the S4 binding site was localized to the first 500 nucleotides of this sequence while that for S15 lies within a 140-nucleotide sequence starting about 600 nucleotides from the 5′-terminus. The binding site for the protein S7 lies between 900 and 1500 nucleotides from the 5′-terminus of the ribosomal RNA.  相似文献   

8.
The synthesis of rRNA was unbalanced by the introduction of plasmids containing rRNA operons with large internal deletions. Significant unbalanced synthesis was achieved only when the deletions affected both 16S and 23S RNA genes or when the deletions affected the 23S RNA gene alone. Although large imbalances in rRNA synthesis resulted from deletions affecting 16S and 23S RNA genes or only 23S RNA genes, excess 16S RNA and defective rRNA species were rapidly degraded. Large imbalances in the synthesis of regions of rRNA did not result in significantly unbalanced synthesis of ribosomal proteins. It therefore is probable that excess intact 16S RNA is degraded because ribosomal proteins are not available for packaging the RNA into ribosomes. Defective RNA species also may be degraded for this reason or because proper ribosome assembly is prevented by the defects in RNA structure. We propose two possible explanations for the finding that unbalanced overproduction of binding sites for feedback ribosomal protein does not result in significant unbalanced translational feedback depression of ribosomal protein mRNAs.  相似文献   

9.
1. Several nuclear mutants have been isolated which showed thermo- or cryo-sensitive growth on non-fermentable media. Although the original strain carried mitochondrial drug resistance mutations (CR, ER, OR and PR), the resistance to one or several drugs was suppressed in these mutants. Two of them showed a much reduced amount of the mitochondrial small ribosomal subunit (37S) and of the corresponding 16S ribosomal RNA. Two dimensional electrophoretic analysis did not reveal any change in the position of any of the mitochondrial ribosomal proteins. However one of the mitochondrial ribosomal proteins. However one of the mutants showed a striking decrease in the amounts of three ribosomal proteins S3, S4 and S15. 2. Four temperature-sensitive mitochondrial mutations have been localized in the region of the gene coding for the large mitochondrial ribosomal RNA (23S). These mutants all showed a marked anomaly in the mitochondrial large ribosomal subunit (50S) and/or the corresponding 23S ribosomal RNA.  相似文献   

10.
Photolysis of [3H]tetracycline in the presence of Escherichia coli ribosomes results in an approximately 1:1 ratio of labelling ribosomal proteins and RNAs. In this work we characterize crosslinks to both 16S and 23S RNAs. Previously, the main target of photoincorporation of [3H]tetracycline into ribosomal proteins was shown to be S7, which is also part of the one strong binding site of tetracycline on the 30S subunit. The crosslinks on 23S RNA map exclusively to the central loop of domain V (G2505, G2576 and G2608) which is part of the peptidyl transferase region. However, experiments performed with chimeric ribosomal subunits demonstrate that peptidyltransferase activity is not affected by tetracycline crosslinked solely to the 50S subunits. Three different positions are labelled on the 16S RNA, G693, G1300 and G1338. The positions of these crosslinked nucleotides correlate well with footprints on the 16S RNA produced either by tRNA or the protein S7. This suggests that the nucleotides are labelled by tetracycline bound to the strong binding site on the 30S subunit. In addition, our results demonstrate that the well known inhibition of tRNA binding to the A-site is solely due to tetracycline crosslinked to 30S subunits and furthermore suggest that interactions of the antibiotic with 16S RNA might be involved in its mode of action.  相似文献   

11.
12.
Following dialysis against distilled water, the 16 S ribosomal RNA of Escherichia coli is unable to interact with 30 S subunit protein S4 at 0 °C. The dialysed RNA recovered this capacity, however, when heated at 40 °C in the presence of 0.02m-MgCl2 prior to addition of the protein. Furthermore, its sensitivity to ribo-nuclease markedly declined and its sedimentation rate increased as a consequence of this treatment. Although no concomitant changes in secondary structure were detected by absorbance and fluorescence techniques, the rearrangement of a small number of base-pairs was not excluded. Kinetic measurements revealed that binding site reactivation satisfies the first-order rate law and that the process is highly temperature-dependent, exhibiting an Arrhenius activation energy of 40,800 cal/mol. Together, these data suggest that dialysed RNA undergoes a unimolecular conformational transition upon pre-incubation in Mg2+-containing buffers and that this transition leads to renaturation of the binding site for protein S4.Similar results were obtained for several other proteins of the 30 S subunit. In particular, S7, S16/S17 and S20 all failed to interact efficiently with dialysed 16 S RNA at 0 °C. These proteins bound normally to the RNA, however, after it had been incubated at 40 °C in the presence of Mg2+ ions. By contrast, prior dialysis of the 16 S RNA did not affect its ability to associate with S8 and S15 at 0 °C. These two proteins interacted equally well with dialysed and pre-incubated 16 S RNA, indicating that their binding sites are not susceptible to the reversible alterations in conformation which influence the attachment of the other RNA-binding proteins to the nucleic acid molecule. The effects of dialysis and pre-incubation on the interaction of 16 S RNA with an unfractionated mixture of 30 S subunit proteins were also investigated. The dialysed RNA bound only S6, S8, S15 and S18 at 0 °C whereas, after heating at. high Mg2+ concentrations, the RNA associated with S4, S7, S9, S13, S16/S17, S19 and S20 as well. These results leave little doubt that the protein-binding capacities of the 16 S RNA are intimately related to its three-dimensional configuration, although individual binding sites appear to differ significantly in their stability to small changes in structure.  相似文献   

13.
Summary The formation of a complex between individual 30S ribosomal proteins and 16S ribosomal RNA was studied by three techniques: zone centrifugation, molecular-sieve chromatography and electrophoresis in polyacrylamide gels. Five 30S proteins form a stable complex with the RNA under the conditions used to assemble ribosomes. Specific and nonspecific complex formation can be distinguished by an analysis of the concentration-dependence for complex formation. Similarly, competition experiments between heterologous proteins that bind to RNA can also be used to establish the uniquness of the RNA binding sites for ribosomal proteins. The data show that four of the five proteins bind to unique sites on the RNA. The fifth protein binds nonspecifically to the RNA. In addition, cooperative interactions between several proteins were observed; these enhance the interaction of proteins with the 16S RNA. A partial assembly sequence for the 30S ribosomal subunit is presented.  相似文献   

14.
Copperative interactions among constituents of the 50S ribosomal subunit of Escherichia coli have been analyzed in order to elucidate its assembly and structural organization. Proteins L5 and L18 were shown to be necessary and sufficient to effect the association of the 5S and 23S RNAs into a quaternary complex that contains equimolar amounts of all four components. Measurement of diffusion constants by laser light scattering revealed that integration of the 5S RNA induced the 23S RNA to adopt a somewhat more open conformation. An investigation of relationships among proteins associated with the central and 3' portions of the 23S RNA demonstrated that attachment of L5, L10 + L11, and L28 depends upon the RNA-binding proteins L16, L2, and L1 + L3 + L6, respectively, and that L2 interacts with the central segment of the 23S RNA. These data, as well as the results of others, have been used to construct a scheme that depicts both direct and indirect associations of the 5S RNA, the 23S RNA, and over two-thirds of the subunit proteins. The 5' third of the 23S RNA apparently organizes the proteins required to nucleate essential reactions, whereas a region within 500 to 1500 bases of its 3' terminus is associated primarily with proteins involved in the major functional activities of the 50S ribosomal particle.  相似文献   

15.
16.
In the quaternary initiation complex, eIF-2.GMPPCP.Met-tRNAf.40S ribosomal subunit, the Met-tRNAf can be cross-linked to the beta subunit of initiation factor eIF-2 as well as to ribosomal proteins S3a and S6 by treatment with the bifunctional reagent, diepoxybutane. Using 40S subunits, modified in advance with the heterobifunctional reagent, methyl-rho-azido-benzoylaminoacetimidate, Met-tRNAf is covalently bound to the same ribosomal proteins (S3a and S6) upon irradiation of the complex with ultraviolet light. Under both conditions proteins S3a and S6, together with a limited number of other ribosomal proteins, are covalently bound to 18S ribosomal RNA.  相似文献   

17.
X-ray and neutron scattering, as well as velocity sedimentation, were used to study the shape and dimensions (compactness) of isolated ribosomal (16S and 23S) RNA's and their complexes with ribosomal proteins. The neutron scattering of ribosomal particles in 42% 2H2O where the protein component is contrast-matched, were taken as a standard of comparison characterizing the dimensions and shape of the 16S and 23S RNA in situ. This comparison allowed the following conclusions: (1) The shape of the isolated 16S RNA at a sufficient Mg2+ concentration (e. g., in the reconstruction buffer) is similar to that of the 16S RNA in situ, but its compactness is somewhat less. (2) The 16S RNA in the complex with protein S4 has a shape and compactness similar to those of the isolated 16S RNA. (3) The 16S RNA in the complex with four core proteins, namely S4, S7, S8 and S15, has a shape and compactness similar to those of the isolated 16S RNA. (4). The six ribosomal proteins, S4, S7, S8, S15, S16, and S17, are necessary and sufficient for the 16S RNA to acquire a compactness similar to that in situ.  相似文献   

18.
An explanation for the fragility of 30 S ribosomal subunits of Bacillus subtilis has been studied. Degradation of 16 S ribosomal RNA, rather than degradation of ribosomal proteins, was found to cause the inactivation of 30 S subunits. Although RNAases were bound specifically to 30 S ribosomal subunits, the RNAases were able to function. Spermidine was found to contribute to the stabilization of 30 S ribosomal subunits by inhibiting the degradation of 16 S ribosomal RNA. A high concentration of Mg2+ also stabilized the 30 S ribosomal subunits of Bacillus subtilis. The polypeptide synthetic activity of 30 S ribosomal subunits prepared in the presence of spermidine was at least 4-times greater than that of 30 S ribosomal subunits prepared in the absence of spermidine; this activity was maintained without any loss for 3 months at ?70°C.  相似文献   

19.
C Zwieb 《Nucleic acids research》1992,20(17):4397-4400
A group of RNA binding proteins, termed tetraloop binding proteins, includes ribosomal protein S15 and protein SRP19 of signal recognition particle. They are primary RNA binding proteins, recognize RNA tetranucleotide loops with a GNAR consensus motif, and require a helical region located adjacent to the tetraloop. Closely related RNA structures that fit these criteria appear in helix 6 of SRP RNA, in helices 22 and 23A of 16 S ribosomal RNA, and, as a pseudoknot, in the regulatory region of the rpsO gene.  相似文献   

20.
Extensive studies in our laboratory using different ribonucleases resulted in valuable data on the topography of the E.coli 16S ribosomal RNA within the native 30S subunit, within partially unfolded 30S subunits, in the free state, and in association with individual ribosomal proteins. Such studies have precise details on the accessibility of certain residues and delineated highly accessible RNA regions. Furthermore, they provided evidence that the 16S rRNA is organized in its subunit into four distinct domains. A secondary structure model of the E.coli 16S rRNA has been derived from these topographical data. Additional information from comparative sequence analyses of the small ribosomal subunit RNAs from other species sequenced so far has been used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号