首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sonication is a simple method for reducing the size of liposomes. We report the size distributions of liposomes as a function of sonication time using three different techniques. Liposomes, mildly sonicated for just 30 sec, had bimodal distributions when surface-weighted with modes at about 140 and 750 nm. With extended sonication, the size distribution remains bimodal but the average diameter of each population decreases and the smaller population becomes more numerous. Independent measurements of liposome size using Dynamic Light Scattering (DLS), transmission electron microscopy (TEM), and the nystatin/ergosterol fusion assay all gave consistent results. The bimodal distribution (even when number-weighted) differs from the Weibull distribution commonly observed for liposomes sonicated at high powers over long periods of time and suggests that a different mechanism may be involved in mild sonication. The observations are consistent with the following mechanism for decreasing liposome size. During ultrasonic irradiation, cavitation, caused by oscillating microbubbles, produces shear fields. Large liposomes that enter these fields form long tube-like appendages that can pinch-off into smaller liposomes. This proposed mechanism is consistent with colloidal theory and the observed behavior of liposomes in shear fields.  相似文献   

2.
Sonication is a simple method for reducing the size of liposomes. We report the size distributions of liposomes as a function of sonication time using three different techniques. Liposomes, mildly sonicated for just 30 sec, had bimodal distributions when surface-weighted with modes at about 140 and 750 nm. With extended sonication, the size distribution remains bimodal but the average diameter of each population decreases and the smaller population becomes more numerous. Independent measurements of liposome size using Dynamic Light Scattering (DLS), transmission electron microscopy (TEM), and the nystatin/ergosterol fusion assay all gave consistent results. The bimodal distribution (even when number-weighted) differs from the Weibull distribution commonly observed for liposomes sonicated at high powers over long periods of time and suggests that a different mechanism may be involved in mild sonication. The observations are consistent with the following mechanism for decreasing liposome size. During ultrasonic irradiation, cavitation, caused by oscillating microbubbles, produces shear fields. Large liposomes that enter these fields form long tube-like appendages that can pinch-off into smaller liposomes. This proposed mechanism is consistent with colloidal theory and the observed behavior of liposomes in shear fields.  相似文献   

3.
Birefringence can be induced in liposome suspensions using electric fields. The fields interact predominantly with anisotropic electrical polarisabilities which give rise to induced dipole moments. Using pulsed electric fields, the optical and electrical polarisabilities and the geometrical size of the liposomes can be measured simultaneously. These parameters have been found to be very sensitive to the presence of small amounts of fluidising additives of polar and ionic nature. Illustrative data are presented for the influence of the amines ammonium chloride, methyl ammonium chloride and lignocaine and of benzyl alcohol on phosphatidylcholine/serine liposomes. Structural changes in the vesicle membranes were detected, which appeared to correlate with the biological functions, thus indicating that electric birefringence is a rapid and useful method for studying interactive phenomena in lipid membrane systems.  相似文献   

4.
Zhou Y  Cui J  Deng CX 《Biophysical journal》2008,94(7):L51-L53
Sonoporation has been exploited as a promising nonviral strategy for intracellular delivery of drugs and genes. The technique utilizes ultrasound application, often facilitated by the presence of microbubbles, to generate transient, nonspecific pores on the cell membrane. However, due to the complexity and transient nature of ultrasound-mediated bubble interaction with cells, no direct correlation of sonoporation with bubble activities such as acoustic cavitation, i.e., the ultrasound-driven growth and violent collapse of bubbles, has been obtained. Using Xenopus oocytes as a model system, this study investigated sonoporation in a single cell affected by colocalized cavitation in real time. A confocally and collinearly-aligned dual-frequency ultrasound transducer assembly was used to generate focused ultrasound pulses (1.5 MHz) to induce focal sonoporation while detecting the broadband cavitation acoustic emission within the same focal zone. Dynamic sonoporation of the single cell was monitored via the transmembrane current of the cell under voltage-clamp. Our results demonstrate for the first time, to our knowledge, the spatiotemporal correlation of sonoporation with cavitation at the single-cell level.  相似文献   

5.
Functional and ecological xylem anatomy   总被引:17,自引:0,他引:17  
Cohesion-tension transport of water is an energetically efficient way to carry large amounts of water from the roots up to the leaves. However, the cohesion-tension mechanism places the xylem water under negative hydrostatic pressure (Px), rendering it susceptible to cavitation. There are conflicts among the structural requirements for minimizing cavitation on the one hand vs maximizing efficiency of transport and construction on the other. Cavitation by freeze-thaw events is triggered by in situ air bubble formation and is much more likely to occur as conduit diameter increases, creating a direct conflict between conducting efficiency and sensitivity to freezing induced xylem failure. Temperate ring-porous trees and vines with wide diameter conduits tend to have a shorter growing season than conifers and diffuse-porous trees with narrow conduits. Cavitation by water stress occurs by air seeding at interconduit pit membranes. Pit membrane structure is at least partially uncoupled from conduit size, leading to a much less pronounced trade-off between conducting efficiency and cavitation by drought than by freezing. Although wider conduits are generally more susceptible to drought-induced cavitation within an organ, across organs or species this trend is very weak. Different trade-offs become apparent at the level of the pit membranes that interconnect neighbouring conduits. Increasing porosity of pit membranes should enhance conductance but also make conduits more susceptible to air seeding. Increasing the size or number of pit membranes would also enhance conductance, but may weaken the strength of the conduit wall against implosion. The need to avoid conduit collapse under negative pressure creates a significant trade-off between cavitation resistance and xylem construction cost, as revealed by relationships between conduit wall strength, wood density and cavitation pressure. Trade-offs involving cavitation resistance may explain the correlations between wood anatomy, cavitation resistance, and the physiological range of negative pressure experienced by species in their native habitats.  相似文献   

6.
Mouse mammary sarcoma cells, line EMT6/Ro, were exposed for 1 min to 1 MHz continuous wave ultrasound over a range of intensities from 0.5 to 30 W/cm2 (spatial peak). The presence of thymine base damage (TBD) products of the 5,6-dihydroxydihydrothymine type was determined by an alkali degradation assay. Production of damage was found to be greatest (approximately 2.7 X 10(-3%) t'/T) at an intensity of 10 W/cm2 and fell off rapidly above and below this intensity. The amount of base damage produced at 10 W/cm2 ultrasound was approximately equivalent to the damage produced by a gamma-ray absorbed dose of 12 krad. Assay of cells immediately after sonication at 10 W/cm2 showed that approximately 14% of the cells had been lysed. Tests showed that it was the DNA of the intact cells, however, which sustained all of the TBD. Survival data demonstrated that of the remaining unlysed cell population approximately 5% were viable, whereas cells exposed to 12 krad showed no survival. Additionally, cells were exposed for up to 5 min at 5 W/cm2. An increase in TBD was demonstrated with increasing time of exposure such that the rate of production at 5 min was approximately three times greater than that of a 1-min exposure. TBD was found to be completely suppressed when cells were sonicated at 10 W/cm2 for 2 min under 4 bar of hydrostatic pressure. Addition of the radical scavengers beta-MEA and cystamine eliminated TBD but had minimal effect on survival. The pressure and scavenger experiments demonstrate that TBD results from cavitation-induced free radicals. Based on the values for both the half-life and diffusion distance of such radicals, our results indicate that at least part of the bubble collapse occurs intracellularly.  相似文献   

7.
The solutions of liposome made of l-α-dilauroyl phosphatidylcholine are sonicated at various powers and frequencies (43-480 kHz), and the resultant change in the size of liposome is measured by the dynamic light scattering method. The ultrasonic power dissipated into the solution is determined by the calorimetric method in order to compare the effects of ultrasound of different frequencies. The faster reduction of the mean size of liposome is achieved at the lower frequency. Comparing at the same frequency and total energy, short-time irradiation of strong ultrasound is more efficient than long-time irradiation of weak ultrasound. These results indicate that the small number of cavitation events with stronger physical disturbance on liposome can reduce the size of the liposome more efficiently than the large number of cavitation events with weaker disturbance.  相似文献   

8.
Solutions of calf thymus DNA have been degraded in the presence of vibrating air bubbles in ultrasonic fields of low power which would not normally induce ultrasonic cavitation. The DNA was degraded to a limiting intrinsic viscosity, after which further irradiation by ultrasound had little or no effect. This limiting intrinsic viscosity decreased with increase in the ultrasonic intensity. Previously developed theories have-been adapted to calculate the maximum velocity gradient associated with the streaming of the solution around such vibrating air bubbles. The tensile force which is induced and which acts on the DNA has been calculated on the basis of current theories of degradation by hydrodynamic shear. These calculations indicate that the degradation of the DNA by ultrasound under conditions of “stable cavitation” is mainly the result of the shearing forces engendered in the solution around the oscillating bubbles.  相似文献   

9.
The purpose of this study was to determine the hemolytic potentials of discrete bubble cavitation and attached cavitation. To generate controlled cavitation events, a venturigeometry hydrodynamic device, called a Cavitation Susceptibility Meter (CSM), was constructed. A comparison between the hemolytic potential of discrete bubble cavitation and attached cavitation was investigated with a single-pass flow apparatus and a recirculating flow apparatus, both utilizing the CSM. An analytical model, based on spherical bubble dynamics, was developed for predicting the hemolysis caused by discrete bubble cavitation. Experimentally, discrete bubble cavitation did not correlate with a measurable increase in plasma-free hemoglobin (PFHb), as predicted by the analytical model. However, attached cavitation did result in significant PFHb generation. The rate of PFHb generation scaled inversely with the Cavitation number at a constant flow rate, suggesting that the size of the attached cavity was the dominant hemolytic factor.  相似文献   

10.
Clinical studies using transcranial Doppler ultrasonography in patients with mechanical heart valves (MHV) have detected gaseous emboli. The relationship of gaseous emboli release and cavitation on MHV has been a subject of debate in the literature. To study the influence of cavitation and gas content on the formation and growth of stable gas bubbles, a mock circulatory loop, which employed a Medtronic-Hall pyrolytic carbon disk valve in the mitral position, was used. A high-speed video camera allowed observation of cavitation and gas bubble release on the inflow valve surfaces as a function of cavitation intensity and carbon dioxide (CO2) concentration, while an ultrasonic monitoring system scanned the aortic outflow tract to quantify gas bubble production by calculating the gray scale levels of the images. In the absence of cavitation, no stable gas bubbles were formed. When gas bubbles were formed, they were first seen a few milliseconds after and in the vicinity of cavitation collapse. The volume of the gas bubbles detected in the aortic track increased with both increased CO2 and increased cavitation intensity. No correlation was observed between O2 concentration and bubble volume. We conclude that cavitation is an essential precursor to stable gas bubble formation, and CO2, the most soluble blood gas, is the major component of stable gas bubbles.  相似文献   

11.
Gas-filled microbubbles attached to cell surfaces can interact with focused ultrasound to create microstreaming of nearby fluid. We directly observed the ultrasound/microbubble interaction and documented that under certain conditions fluorescent particles that were attached to the surface of live cells could be removed. Fluorescently labeled liposomes that were larger than 500 nm in diameter were attached to the surface of endothelial cells using cRGD targeting to αvβ3 integrin. Microbubbles were attached to the surface of the cells through electrostatic interactions. Images taken before and after the ultrasound exposure were compared to document the effects on the liposomes. When exposed to ultrasound with peak negative pressure of 0.8 MPa, single microbubbles and groups of isolated microbubbles were observed to remove targeted liposomes from the cell surface. Liposomes were removed from a region on the cell surface that averaged 33.1 μm in diameter. The maximum distance between a single microbubble and a detached liposome was 34.5 μm. Single microbubbles were shown to be able to remove liposomes from over half the surface of a cell. The distance over which liposomes were removed was significantly dependent on the resting diameter of the microbubble. Clusters of adjoining microbubbles were not seen to remove liposomes. These observations demonstrate that the fluid shear forces generated by the ultrasound/microbubble interaction can remove liposomes from the surfaces of cells over distances that are greater than the diameter of the microbubble.  相似文献   

12.
目的:人承重关节内受到的多种机械应力(剪切力、张力、静水压力等)在调节关节软骨细胞的生理功能方面起着重要作用。建立对人膝关节软骨细胞施加不同强度周期性静水压的压力模型,观察不同压力强度下软骨细胞的生长形态、增殖和凋亡情况。方法:采用酶消化法分离培养正常成人膝关节软骨细胞,将培养的第3代软骨细胞分为6组:对照组、0.5 MPa组、1.0 MPa组、3.0MPa组、5.0 MPa组、8.0 MPa组,应用高压恒温静水压加载系统分别给予各组不同强度压力作用5 d,每日1 h。甲苯胺蓝染色法和Ⅱ型胶原免疫组织化学染色法鉴定软骨细胞,倒置相差显微镜观察细胞形态和生长状况,流式细胞术检测细胞凋亡,四甲基偶氮唑蓝(MTT)法绘制细胞生长曲线。结果:与对照组相比,0.5 MPa、3.0 MPa组无明显差异(P0.05);1.0 MPa组能促进软骨细胞增殖,抑制凋亡(P0.05);5.0 MPa组出现细胞增殖能力下降,细胞活力降低,凋亡率增加(P0.05);8.0 MPa组则表现出明显的细胞增殖的抑制和细胞凋亡趋势(P0.05),以及细胞形态学的改变。结论:不同强度的周期性压力对人软骨细胞的新陈代谢产生了不同影响,尤其在软骨细胞的增殖和凋亡水平方面。利用本压力实验模型能体外模拟人负重关节软骨细胞的受压情况,初步确定了人软骨细胞压力实验中压力梯度的选择。为软骨细胞的压力损伤研究提供了实验数据,为进一步探寻压力作用与骨关节炎的关系提供了实验平台。  相似文献   

13.
The mobility of phospholipid chains in membranes of liposomes consisting of egg lecitin, cholesterol, dicetylphosphate, sensitized by the lipopolysaccharide antigen F. tularensis by the action of a homologous antiserum and a rabbit complement preparation was studied using 5- and 16-doxylstearate spin probes. It was shown that, during the immune lysis of liposome membranes, changes in the dynamics of spin probes occur, which correlate with the formation of transmembrane channels and exit of the fluorescent marker from the interior of liposomes. It was found that the ratio of the intensities I1/I2 of two low-field extrema in the ESR spectrum is most sensitive to changes in the liposome membrane that are induced by immune components.  相似文献   

14.
J. Wischhusen  F. Padilla 《IRBM》2019,40(1):10-15

Background

Ultrasound-targeted microbubble destruction (UTMD) is a type of ultrasound therapy, in which low frequency moderate power ultrasound is combined with microbubbles to trigger cavitation. Cavitation is the process of oscillation of gas bubbles causing biophysical effects such as pushing and pulling or shock waves that permeabilize biological barriers. In vivo, cavitation results in tissue permeabilization and is used to enable local delivery of nanomedicine. While cavitation can occur in biological liquids when high pressure ultrasound is applied, the use of microbubbles as cavitation nuclei in UTMD largely facilitates the induction of cavitation. UTMD is intensively studied for drug delivery into tumor tissue, but also for the activation of anti-tumor immune responses. The first clinical studies of UTMD-mediated chemotherapy delivery confirmed safety and efficacy of this approach.

Aim

The present review summarizes ultrasound settings, cavitation approaches, biophysical mechanisms of drug delivery, drug carriers, and pre-clinical and clinical applications of UTMD for drug delivery into tumors.  相似文献   

15.
A laboratory study of the hydrostatic collapse of diseased tibial arteries demonstrated hysteresis in the pressure-flow behaviour which resembled that seen in the stress-strain relations of the arterial tissue. The pressures at which the vessels collapsed were found to be considerably lower than expected on the basis of theoretical elastic models. Also, the pressures at which the vessels reopened were consistently lower than the pressures at which they collapsed. These findings were explained on the basis of viscoelasticity. The difference between collapse and opening pressure may provide insight into the mechanical properties of vessels, and a clue to errors in non-invasive measurements of blood pressure which depend upon collapse of arteries.  相似文献   

16.
17.
High hydrostatic pressure (HHP) present in natural environments impacts on cell membrane biophysical properties and protein quaternary structure. We have investigated the effect of high hydrostatic pressure on G22E-MscL, a spontaneously opening mutant of Escherichia coli MscL, the bacterial mechanosensitive channel of large conductance. Patch-clamp technique combined with a flying-patch device and hydraulic setup allowed the study of the effects of HHP up to 90 MPa (as near the bottom of the Marianas Trench) on the MscL mutant channel reconstituted into liposome membranes, in addition to recording in situ from the mutant channels expressed in E. coli giant spheroplasts. In general, against thermodynamic predictions, hydrostatic pressure in the range of 0.1–90 MPa increased channel open probability by favoring the open state of the channel. Furthermore, hydrostatic pressure affected the channel kinetics, as manifested by the propensity of the channel to gate at subconducting levels with an increase in pressure. We propose that the presence of water molecules around the hydrophobic gate of the G22E MscL channel induce hydration of the hydrophobic lock under HHP causing frequent channel openings and preventing the channel closure in the absence of membrane tension. Furthermore, our study indicates that HHP can be used as a valuable experimental approach toward better understanding of the gating mechanism in complex channels such as MscL.  相似文献   

18.
Application of ultrasound transiently permeabilizes cell membranes and offers a nonchemical, nonviral, and noninvasive method for cellular drug delivery. Although the ability of ultrasound to increase transmembrane transport has been well demonstrated, a systematic dependence of transport on ultrasound parameters is not known. This study examined cell viability and cellular uptake of calcein using 3T3 mouse cell suspension as a model system. Cells were exposed to varying acoustic energy doses at four different frequencies in the low frequency regime (20-100 kHz). At all frequencies, cell viability decreased with increasing acoustic energy dose, while the fraction of cells exhibiting uptake of calcein showed a maximum at an intermediate energy dose. Acoustic spectra under various ultrasound conditions were also collected and assessed for the magnitude of broadband noise and subharmonic peaks. While the cell viability and transport data did not show any correlation with subharmonic (f/2) emission, they correlated with the broadband noise, suggesting a dominant contribution of transient cavitation. A theoretical model was developed to relate reversible and irreversible membrane permeabilization to the number of transient cavitation events. The model showed that nearly every stage of transient cavitation, including bubble expansion, collapse, and subsequent shock waves may contribute to membrane permeabilization. For each mechanism, the volume around the bubble within which bubbles induce reversible and irreversible membrane permeabilization was determined. Predictions of the model are consistent with experimental data.  相似文献   

19.
20.
Airway collapse and reopening due to mechanical ventilation exerts mechanical stress on airway walls and injures surfactant-compromised lungs. The reopening of a collapsed airway was modeled experimentally and computationally by the progression of a semi-infinite bubble in a narrow fluid-occluded channel. The extent of injury caused by bubble progression to pulmonary epithelial cells lining the channel was evaluated. Counterintuitively, cell damage increased with decreasing opening velocity. The presence of pulmonary surfactant, Infasurf, completely abated the injury. These results support the hypotheses that mechanical stresses associated with airway reopening injure pulmonary epithelial cells and that pulmonary surfactant protects the epithelium from this injury. Computational simulations identified the magnitudes of components of the stress cycle associated with airway reopening (shear stress, pressure, shear stress gradient, or pressure gradient) that may be injurious to the epithelial cells. By comparing these magnitudes to the observed damage, we conclude that the steep pressure gradient near the bubble front was the most likely cause of the observed cellular damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号