首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple tethers are very likely extracted when leukocytes roll on the endothelium under high shear stress. Endothelial cells have been predicted to contribute more significantly to simultaneous tethers and thus to the overall rolling stabilization. We therefore extracted and quantified double tethers from endothelial cells with the micropipette aspiration technique. We show that the constitutive parameters (threshold force (F0) and effective viscosity (etaeff)) for double-tether extraction are twice those for single-tether extraction and are remarkably similar for human neonatal (F0=105+/-5 pN; etaeff=1.0+/-0.1 pN.s/microm) and adult (F0=118+/-13 pN; etaeff=1.3+/-0.2 pN.s/microm) dermal microvascular, and human umbilical vein (F0=99+/-3 pN; etaeff=1.0+/-0.1 pN.s/microm) endothelial cells. Additionally, these parameters are also independent of surface receptor type, cytokine stimulation, and attachment state of the endothelial cell. We also introduce a novel correlation between the cell-substrate contact stress and gap width, with which we can predict the apparent cell-substrate separation range to be 0.01-0.1 microm during leukocyte rolling. With a biomechanical model of leukocyte rolling, we calculate the force history on the receptor-ligand bond during tether extraction and predict maximum stabilization for the double simultaneous tether extraction case.  相似文献   

2.
During the rolling of human neutrophils on the endothelium, tethers (cylindrical membrane tubes) are likely extracted from the neutrophil. Tether extraction reduces the force imposed on the adhesive bond between the neutrophil and endothelium, thereby facilitating the rolling. However, whether tethers can be extracted from the endothelium is still unknown. Here, with the micropipette-aspiration technique, we show that tethers can be extracted from either suspended or attached human umbilical vein endothelial cells. We also show that a linear relationship between the pulling force and tether growth velocity exists and this relationship does not depend on the receptor type (used to impose point forces), tumor necrosis factor-alpha stimulation, or cell attachment state. With linear regression, we determined that the threshold force was 50 pN and the effective viscosity was 0.50 pN.s/microm. Therefore, tethers might be simultaneously extracted from the neutrophil and endothelial cell during the rolling and, more importantly, the endothelial cell might contribute much more to the total composite tether length than the neutrophil. Compared with tether extraction from the neutrophil alone, simultaneous tether extraction results in a larger increase in the lifetime of the adhesive bond, and thus further stabilizes the rolling of neutrophils under high physiological shear stresses.  相似文献   

3.
Membrane tethers were found to be extracted from leukocytes and macrovascular endothelial cells (e.g., human umbilical vein endothelial cells or HUVECs) when a point pulling force was exerted. These tethers stabilize leukocyte rolling on the endothelium during the inflammatory response. However, little is known about tether extraction from other vascular cells like microvascular endothelial cells (MECs). In this study, we extracted tethers from both adult and neonatal dermal MECs with the micropipette aspiration technique. We found a linear relationship between the pulling force and tether growth velocity for both cell lines. This constitutive relationship is mainly determined by the membrane mechanical property and the underlying actin-based cytoskeleton for both attached and suspended endothelial cells. It is independent of cell surface receptor type, attachment state, cytokine stimulation, or cell lineage. For both types of MECs, the threshold forces are 50 pN and the effective viscosities are around 0.5 pN·s/µm. These results, which are close to what was obtained from HUVECs, indicate that homogeneity is preserved in terms of tether extraction among different types of endothelial cells, and simultaneous tethers are likely extracted when leukocytes roll on either microvascular or macrovascular surfaces. leukocyte rolling; cell mechanics; micropipette; cytoskeleton  相似文献   

4.
Yu Y  Shao JY 《Biophysical journal》2007,92(2):418-429
Neutrophil rolling is the initial step of neutrophil recruitment to sites of inflammation. During the rolling, membrane tethers are very likely extracted from both the neutrophil and the endothelial cell lining of vessel walls. Here, we present a two-dimensional neutrophil-rolling model to investigate whether and how membrane tethers contribute to stable neutrophil rolling. In our model, neutrophils are assumed to be rigid spheres covered with randomly distributed deformable microvilli, and endothelial cells are modeled as flat membrane surfaces decorated with evenly distributed ligands. The instantaneous rolling velocity and other unknowns of the model are calculated by coupling the hydrodynamic resistance functions, the geometric relationships, and the constitutive equations that govern microvillus extension and tether extraction. Our results show that glutaraldehyde-fixed neutrophils (without microvillus extension or tether extraction) roll unstably on a P-selectin-coated substrate with large variance in rolling velocity. In contrast, normal neutrophils roll much more stably, with small variance in rolling velocity. Compared with tether extraction from the neutrophil alone, simultaneous tether extraction from the neutrophil and endothelial cell greatly increases the lifetime of the adhesive bond that mediates the rolling, allows more transient tethers to make the transition into stable rolling, and enables rolling neutrophils to be more shear-resistant.  相似文献   

5.
When a cell adhered to another cell or substratum via surface proteins is forced to detach, lipid membrane tethers are often extruded from the cell surface before the protein bond dissociates. For example, during the inflammatory reaction leukocytes roll on the surface of activated endothelial cells. The rolling adhesion is mediated by interactions of selectins with their ligands, e.g., P-selectin glycoprotein ligand (PSGL)-1, which extrudes membrane tethers from the surfaces of both leukocytes and endothelial cells. Membrane tether extrusion has been suggested to regulate leukocyte rolling. Here we examine several factors that may affect forces required to initiate membrane tethers, or initial tether force. It was found that initial tether forces were similar regardless of the presence or absence of the cytoplasmic tail of P-selectin and regardless of whether the tethers were extruded via binding to PSGL-1 or Fcγ receptors. Initial tether forces were found to depend on the cell types tested and were greatly reduced by treatment of latrunculin A, which inhibits actin polymerization. These data provide additional insights to the control of membrane tether extrusion, which should be taken into account when cellular functions such as rolling where tether extrusion plays a regulatory role are compared using different cell types expressing the same molecule.  相似文献   

6.
Xu G  Shao JY 《Biophysical journal》2005,88(1):661-669
The initial arrest and subsequent rolling of a leukocyte on the vascular endothelium is believed to be facilitated by the extraction of tethers, which are narrow membranous tubes drawn from the leukocyte. Although single tether extraction from neutrophils has been studied thoroughly, the relationship between the tether force (F) and tether-growth velocity (U(t)) is still unknown for double tethers drawn from neutrophils. In this study, we have determined this relationship with the micropipette-aspiration technique. As a comparison, tether extraction from CD4+ T-lymphocytes was also studied. The threshold force and effective viscosity for single tether extraction from passive CD4+ T-lymphocytes were found to be 46 pN and 1.55 pN x s/microm, respectively. These values were modulated by stimulation with phorbol myristate acetate (PMA), but not interleukin-8 (IL-8). More importantly, for both types of leukocyte, the threshold force and effective viscosity for double tether extraction are about twice as large as those corresponding to single tether extraction. Neither IL-8 nor PMA stimulation had any effect on this correlation. These results indicate that double tethers are highly localized on cellular surfaces and independent of each other during the rolling process.  相似文献   

7.
Membrane tethers are extracted when neutrophils roll on the endothelium to initiate their transendothelial migration. Tether extraction from both neutrophils and endothelial cells stabilizes neutrophil rolling, so it has been studied extensively and the force-velocity relationship for tether extraction is of great interest. Due to limitations of the techniques used in previous studies, this relationship has been obtained only from tethers perpendicular to the cell surface. Here, with the microcantilever technique, where latex beads affixed on silicon cantilevers were used as the force transducer, we extracted tethers either perpendicular or tangential to the neutrophil surface. We found that the force-velocity relationship was not sensitive to tether pulling direction. Little movement of the tether-cell junction was observed during tangential tether extraction, and no coalescence was observed during multiple tether extraction. Following adhesion rupture, spontaneous tether retraction was visualized by membrane staining, which revealed two phases: one was fast and exponential, whereas the other was slow and linear. Both phases can be reproduced with a mechanical model. These results show for the first time, to our knowledge, how neutrophil tethers shorten upon instantaneous force removal, and furthermore, they illustrate how membrane tethers contribute to neutrophil rolling stability during the inflammatory response.  相似文献   

8.
During leukocyte rolling on the endothelium, surface protrusion and membrane tether extraction occur consecutively on leukocytes. Both surface protrusion and tether extraction of leukocytes stabilize leukocyte rolling. Tethers can also be extracted from endothelial cells (ECs), but surface protrusion of ECs has never been confirmed to exist. In this study, we examined EC surface protrusion with the micropipette aspiration technique. We found that, like leukocytes, surface protrusion on an EC did exist when a point force was imposed. Both the protrusional stiffness and the crossover force of EC surface protrusion were dependent on the force loading rate and the cytoskeletal integrity, but neither of them was dependent on tumor necrosis factor α stimulation. Temperature (37°C) affected the protrusional stiffness only at small force loading rates. When a neutrophil was employed to directly impose the pulling force on the EC, simultaneous surface protrusion from both cells occurred, and it can be modeled as two springs connected in series, although the spring constants should be adjusted according to the force loading rate. Therefore, EC surface protrusion is an important aspect of leukocyte rolling, and it should not be ignored when leukocyte rolling stability is studied systematically.  相似文献   

9.
We demonstrate an additional step and a positive feedback loop in leukocyte accumulation on inflamed endothelium. Leukocytes in shear flow bind to adherent leukocytes through L-selectin/ligand interactions and subsequently bind downstream and roll on inflamed endothelium, purified E-selectin, P-selectin, L-selectin, VCAM-1, or peripheral node addressin. Thus adherent leukocytes nucleate formation of strings of rolling cells and synergistically enhance leukocyte accumulation. Neutrophils, monocytes, and activated T cell lines, but not peripheral blood T lymphocytes, tether to each other through L-selectin. L- selectin is not involved in direct binding to either E- or P-selectin and is not a major counterreceptor of endothelial selectins. Leukocyte- leukocyte tethers are more tolerant to high shear than direct tethers to endothelial selectins and, like other L-selectin-mediated interactions, require a shear threshold. Synergism between leukocyte- leukocyte and leukocyte-endothelial interactions introduces novel regulatory mechanisms in recruitment of leukocytes in inflammation.  相似文献   

10.
L-selectin is a leukocyte lectin that mediates leukocyte capture and rolling in the vasculature. The cytoplasmic domain of L-selectin has been shown to regulate leukocyte rolling. In this study, the regulatory mechanisms by which this domain controls L-selectin adhesiveness were investigated. We report that an L-selectin mutant generated by truncation of the COOH-terminal 11 residues of L-selectin tail, which impairs association with the cytoskeletal protein alpha-actinin, could capture leukocytes to glycoprotein L-selectin ligands under physiological shear flow. However, the conversion of initial tethers into rolling was impaired by this partial tail truncation, and was completely abolished by a further four-residue truncation of the L-selectin tail. Physical anchorage of both cell-free tail-truncated mutants within a substrate fully rescued their adhesive deficiencies. Microkinetic analysis of full-length and truncated L-selectin-mediated rolling at millisecond temporal resolution suggests that the lifetime of unstressed L-selectin tethers is unaffected by cytoplasmic tail truncation. However, cytoskeletal anchorage of L-selectin stabilizes the selectin tether by reducing the sensitivity of its dissociation rate to increasing shear forces. Low force sensitivity (reactive compliance) of tether lifetime is crucial for selectins to mediate leukocyte rolling under physiological shear stresses. This is the first demonstration that reduced reactive compliance of L-selectin tethers is regulated by cytoskeletal anchorage, in addition to intrinsic mechanical properties of the selectin-carbohydrate bond.  相似文献   

11.
Rolling leukocytes deform and show a large area of contact with endothelium under physiological flow conditions. We studied the effect of cytoplasmic viscosity on leukocyte rolling using our three-dimensional numerical algorithm that treats leukocyte as a compound droplet in which the core phase (nucleus) and the shell phase (cytoplasm) are viscoelastic fluids. The algorithm includes the mechanical properties of the cell cortex by cortical tension and considers leukocyte microvilli that deform viscoelastically and form viscous tethers at supercritical force. Stochastic binding kinetics describes binding of adhesion molecules. The leukocyte cytoplasmic viscosity plays a critical role in leukocyte rolling on an adhesive substrate. High-viscosity cells are characterized by high mean rolling velocities, increased temporal fluctuations in the instantaneous velocity, and a high probability for detachment from the substrate. A decrease in the rolling velocity, drag, and torque with the formation of a large, flat contact area in low-viscosity cells leads to a dramatic decrease in the bond force and stable rolling. Using values of viscosity consistent with step aspiration studies of human neutrophils (5-30 Pa·s), our computational model predicts the velocities and shape changes of rolling leukocytes as observed in vitro and in vivo.  相似文献   

12.
Two mechanisms have been proposed for regulating rolling velocities on selectins. These are (a) the intrinsic kinetics of bond dissociation, and (b) the reactive compliance, i.e., the susceptibility of the bond dissociation reaction to applied force. To determine which of these mechanisms explains the 7.5–11.5-fold faster rolling of leukocytes on L-selectin than on E- and P-selectins, we have compared the three selectins by examining the dissociation of transient tethers. We find that the intrinsic kinetics for tether bond dissociation are 7–10-fold more rapid for L-selectin than for E- and P-selectins, and are proportional to the rolling velocities through these selectins. The durations of pauses during rolling correspond to the duration of transient tethers on low density substrates. Moreover, applied force increases dissociation kinetics less for L-selectin than for E- and P-selectins, demonstrating that reactive compliance is not responsible for the faster rolling through L-selectin. Further measurements provide a biochemical and biophysical framework for understanding the molecular basis of rolling. Displacements of tethered cells during flow reversal, and measurements of the distance between successive pauses during rolling provide estimates of the length of a tether and the length of the adhesive contact zone, and suggest that rolling occurs with as few as two tethers per contact zone. Tether bond lifetime is an exponential function of the force on the bond, and the upper limit for the tether bond spring constant is of the same order of magnitude as the estimated elastic spring constant of the lectin–EGF unit. Shear uniquely enhances the rate of L-selectin transient tether formation, and conversion of tethers to rolling adhesions, providing further understanding of the shear threshold requirement for rolling through L-selectin.  相似文献   

13.
Rolling allows leukocytes to maintain adhesion to vascular endothelium and to molecularly coated surfaces in flow chambers. Using insights from adhesive dynamics, a computational method for simulating leukocyte rolling and firm adhesion, we have developed a semianalytic model for the steady-state rolling of a leukocyte. After formation in a force-free region of the contact zone, receptor-ligand bonds are transported into the trailing edge of the contact zone. Rolling velocity results from a balance of the convective flux of bonds and the rate of dissociation at the back edge of the contact zone. We compare the model's results to that of adhesive dynamics and to experimental data on the rolling of leukocytes, with good agreement. We calculate the dependence of rolling velocity on shear rate, intrinsic forward and reverse reaction rates, bond stiffness, and reactive compliance, and use the model to calculate a state diagram relating molecular parameters and the dynamic state of adhesion. A dimensionless form of the analytic model permits exploration of the parameters that control rolling. The chemical affinity of a receptor-ligand pair does not uniquely determine rolling velocity. We elucidate a fundamental relationship between off-rate, ligand density, and reactive compliance at the transition between firm and rolling adhesion. The model provides a rapid method for screening system parameters for the potential to mediate rolling.  相似文献   

14.
Leukocyte recruitment to sites of inflammation is initiated by their tethering and rolling on the activated endothelium under flow. Even though the fast kinetics and high tensile strength of selectin-ligand bonds are primarily responsible for leukocyte rolling, experimental evidence suggests that cellular properties such as cell deformability and microvillus elasticity actively modulate leukocyte rolling behavior. Previous theoretical models either assumed cells as rigid spheres or were limited to two-dimensional representations of deformable cells with deterministic receptor-ligand kinetics, thereby failing to accurately predict leukocyte rolling. We therefore developed a three-dimensional computational model based on the immersed boundary method to predict receptor-mediated rolling of deformable cells in shear flow coupled to a Monte Carlo method simulating the stochastic receptor-ligand interactions. Our model predicts for the first time that the rolling of more compliant cells is relatively smoother and slower compared to cells with stiffer membranes, due to increased cell-substrate contact area. At the molecular level, we show that the average number of bonds per cell as well as per single microvillus decreases with increasing membrane stiffness. Moreover, the average bond lifetime decreases with increasing shear rate and with increasing membrane stiffness, due to higher hydrodynamic force experienced by the cell. Taken together, our model captures the effect of cellular properties on the coupling between hydrodynamic and receptor-ligand bond forces, and successfully explains the stable leukocyte rolling at a wide range of shear rates over that of rigid microspheres.  相似文献   

15.
Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds.  相似文献   

16.
Visualization of flowing neutrophils colliding with adherent 1-mum-diameter beads presenting P-selectin allowed the simultaneous measurement of collision efficiency (epsilon), membrane tethering fraction (f), membrane tether growth dynamics, and PSGL-1/P-selectin binding lifetime. For 1391 collisions analyzed over venous wall shear rates from 25 to 200 s(-1), epsilon decreased from 0.17 to 0.004, whereas f increased from 0.15 to 0.70, and the average projected membrane tether length, L(tether)(m), increased from 0.35 mum to approximately 2.0 mum over this shear range. At all shear rates tested, adhesive collisions lacking membrane tethers had average bond lifetimes less than those observed for collisions with tethers. For adhesive collisions that failed to form membrane tethers, the regressed Bell parameters (consistent with single bond Monte Carlo simulation) were zero-stress off-rate, k(off)(0) = 0.56 s(-1) and reactive compliance, r = 0.10 nm, similar to published atomic force microscopy (AFM) measurements. For all adhesion events (+/- tethers), the bond lifetime distributions were more similar to those obtained by rolling assay and best simulated by Monte Carlo with the above Bell parameters and an average of 1.48 bonds (n = 1 bond (67%), n = 2 (22%), and n = 3-5 (11%)). For collisions at 100 s(-1), pretreatment of neutrophils with actin depolymerizing agents, latrunculin or cytochalasin D, had no effect on epsilon, but increased L(tether)(m) by 1.74- or 2.65-fold and prolonged the average tether lifetime by 1.41- or 1.65-fold, respectively. Jasplakinolide, an actin polymerizing agent known to cause blebbing, yielded results similar to the depolymerizing agents. Conversely, cholesterol-depletion with methyl-beta-cyclodextrin or formaldehyde fixation had no effect on epsilon, but reduced L(tether)(m) by 66% or 97% and reduced the average tether lifetime by 30% or 42%, respectively. The neutrophil-bead collision assay combines advantages of atomic force microscopy (small contact zone), aggregometry (discrete interactions), micropipette manipulation (tether visualization), and rolling assays (physiologic flow loading). Membrane tether growth can be enhanced or reduced pharmacologically with consequent effects on PSGL-1/P-selectin lifetimes.  相似文献   

17.
Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin-PSGL-1 off-rates (catch bonds), whereas higher forces increase off-rates (slip bonds). We determined that a force-dependent decrease in off-rates dictated flow-enhanced rolling of L-selectin-bearing microspheres or neutrophils on PSGL-1. Catch bonds enabled increasing force to convert short-lived tethers into longer-lived tethers, which decreased rolling velocities and increased the regularity of rolling steps as shear rose from the threshold to an optimal value. As shear increased above the optimum, transitions to slip bonds shortened tether lifetimes, which increased rolling velocities and decreased rolling regularity. Thus, force-dependent alterations of bond lifetimes govern L-selectin-dependent cell adhesion below and above the shear optimum. These findings establish the first biological function for catch bonds as a mechanism for flow-enhanced cell adhesion.  相似文献   

18.
Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip bonds) their lifetimes. The force-dependent 'catch-slip' bond kinetics are explained using the 'two pathway model' for bond dissociation. Both the 'sliding-rebinding' and the 'allosteric' mechanisms attribute 'catch-slip' bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This 'shear-threshold' phenomenon is a consequence of shear-enhanced tethering and catch bond-enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (>0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers.  相似文献   

19.
L-selectin is a key lectin essential for leukocyte capture and rolling on vessel walls. Functional adhesion of L-selectin requires a minimal threshold of hydrodynamic shear. Using high temporal resolution videomicroscopy, we now report that L-selectin engages its ligands through exceptionally labile adhesive bonds (tethers) even below this shear threshold. These tethers share a lifetime of 4 ms on distinct physiological ligands, two orders of magnitude shorter than the lifetime of the P-selectin-PSGL-1 bond. Below threshold shear, tether duration is not shortened by elevated shear stresses. However, above the shear threshold, selectin tethers undergo 14-fold stabilization by shear-driven leukocyte transport. Notably, the cytoplasmic tail of L-selectin contributes to this stabilization only above the shear threshold. These properties are not shared by P-selectin- or VLA-4-mediated tethers. L-selectin tethers appear adapted to undergo rapid avidity enhancement by cellular transport, a specialized mechanism not used by any other known adhesion receptor.  相似文献   

20.
《The Journal of cell biology》1994,125(6):1417-1427
Leukocyte interactions with vascular endothelium at sites of inflammation can be dynamically regulated by activation-dependent adhesion molecules. Current models, primarily based on studies with polymorphonuclear leukocytes, suggest the involvement of multiple members of the selectin, integrin, and immunoglobulin gene families, sequentially, in the process of initial attachment (rolling), stable adhesion (arrest), spreading and ultimate diapedesis. In the current study, IL-4-activated human umbilical vein endothelium, which selectively expresses VCAM-1 and an L-selectin ligand but not E- selectin, and appropriate function blocking monoclonal antibodies, were used to study monocyte-endothelial interactions in an in vitro model that mimics microcirculatory flow conditions. In this system, L- selectin mediates monocyte rolling and also facilitates alpha 4 beta 1- integrin-dependent arrest, whereas beta 2-integrins are required for spreading of firmly attached monocytes on the endothelial cell surface but not their arrest. These findings provide the first in vitro evidence for human monocyte rolling on cytokine-activated endothelium, and suggest a sequential requirement for both beta 1- and beta 2- integrin-dependent adhesive mechanisms in monocyte-endothelial interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号