首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The contributions of intramembranous and extramembranous segments of transmembrane proteins to frictional forces have been studied by covalently attached 14N- and 15N-indane dione and maleimide spin labels using saturation transfer electron spin resonance spectroscopy. The role of molecular size and membrane viscosity is discussed in determining rotational mobilities of proteins. By comparing the measured rotational correlation times with the predictions of hydrodynamic models the aggregation states of transmembrane proteins is estimated. On increasing the viscosity of the aqueous phase by polyols the viscous drag of the extramembranous segments of proteins is increased and from systematic hydrodynamic measurements the size of the protruding segments can be estimated. The role of slowed molecular diffusion is briefly discussed in the inhibition of enzymatic activity. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
Research on antimicrobial peptides is in part driven by urgent medical needs such as the steady increase in pathogens being resistant to antibiotics. Despite the wealth of information compelling structure–function relationships are still scarce and thus the interfacial activity model has been proposed to bridge this gap. This model also applies to other interfacially active (membrane active) peptides such as cytolytic, cell penetrating or antitumor peptides. One parameter that is strongly linked to interfacial activity is the spontaneous lipid curvature, which is experimentally directly accessible. We discuss different parameters such as H-bonding, electrostatic repulsion, changes in monolayer surface area and lateral pressure that affect induction of membrane curvature, but also vice versa how membrane curvature triggers peptide response. In addition, the impact of membrane lipid composition on the formation of curved membrane structures and its relevance for diverse mode of action of interfacially active peptides and in turn biological activity are described. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

4.
The effects of lysolipids on phospholipid layer curvature and bending elasticity were examined using x-ray diffraction and the osmotic stress method. Lysolipids with two different head groups, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and differing hydrocarbon chains were mixed with the hexagonal-forming lipid, dioleoylphosphatidylethanolamine (DOPE). With up to 30 mole% lysolipid in DOPE, the mixture maintains the inverted hexagonal (H(II)) phase in excess water, where increasing levels of lysolipid result in a systematic increase in the H(II) lattice dimension. Analysis of the structural changes imposed by lysolipids show that, opposite to DOPE itself, which has an spontaneous radius of curvature (R(0)) of -30 A, PC lysolipids add high positive curvature, with R(0) = +38 to +60 A, depending on chain length. LysoPEs, in contrast, add very small curvatures. When both polar group and hydrocarbon chains of the added lysolipid mismatch those of DOPE, the structural effects are qualitatively different from otherwise. Such mismatched lysolipids "reshape" the effective combination molecule into a longer and more cylindrical configuration compared to those lysolipids with either matching polar group or hydrocarbon chain.  相似文献   

5.
6.
2-Methyl-2-[p-(1,2,3,4-tetrahydro-1-naphthyl)phenoxy]propionic acid (TPIA), an acetyl coenzyme A carboxylase inhibitor, blocks the aldosterone-induced increase in transepithelial sodium transport. To examine the requirement for ongoing fatty acid synthesis and/or elongation in the aldosterone-induced alteration of cellular protein metabolism in the toad's urinary bladder, the effect of TPIA has been examined in double-labeled amino acid incorporation experiments. TPIA itself has no effect on the pattern of protein labeling in either the "soluble" or a plasma membrane-enriched fraction. However, inhibition of fatty acid synthesis selectively inhibits the aldosterone-induced incorporation of membrane proteins without altering the labeling of soluble cell protein. These results indicate that ongoing fatty acid synthesis is required for the hormone-induced changes in plasma membrane protein metabolism.  相似文献   

7.
S. Krimm 《Biopolymers》1983,22(1):217-225
A vibrational force field for the polypeptide chain has been developed for normal-mode analysis of such molecules. It can reproduce observed frequencies of known structures to within about 5 cm?1. We review the application of this technique to conformational problems in peptides (β-turns and their model compounds), polypeptides [the αII-helix and crystalline poly(glycine II)], and proteins (bacteriorhodopsin and glucagon).  相似文献   

8.
Lateral chain packing in lipids and membranes   总被引:2,自引:0,他引:2  
The aliphatic chains of many biologically important lipids are heterogeneous and often related to the functions of the molecules. Certain phospholipids containing arachidonic acid may serve as precursors for prostaglandins, certain diglycerides may serve as second messengers for certain membrane-triggered reactions (43), and other phospholipids containing a very short chain in the two position may serve as vasoactive hormones (44). The packing of such molecules is of interest. The evidence is quite clear from both the conformation of saturated and unsaturated molecules and from mixing experiments in the solid state that long and short chains don't mix well, nor do unsaturated and saturated chains, even if they are of the same chain length. There is even some evidence to indicate that some degree of chain segregation occurs even in the liquid state. However, different chains are often associated through covalent bonds, e.g., in wax esters, diacylglycerols, triacylglycerols, and phospholipids. A variety of possibilities for chain segregation are present in the neat phases of wax esters, ceramides, diacylglycerols, and triacylglycerols. However, in the unique case of membrane lipids like phospholipids or sphingolipids, the two chains are forced to lie side by side by virtue of the interaction of the polar group with water, and thus interactions between different chains must occur. Most of the evidence suggests that, when a solid phase results in these systems, the nonspecific chain packing mode (hexagonal chain packing) is preferred. In fact, for all of the phospholipids studied thus far, clearcut evidence of specific chain-chain interaction in molecules having both unsaturated and saturated chains has never been observed. However, for mixed chain triacylglycerols, evidence of specific chain-chain interactions (beta' and even beta) has been found and some suggestions have been given as to how this might occur through chain segregation mechanisms in the neat state. The literature suggests that further work needs to be done on the interaction of different chains that are covalently linked to the same molecule. Such studies will lead to a better understanding of the structure of lipid bilayers, membranes, lipoproteins, and lipid deposits.  相似文献   

9.
This paper studies change of membrane shape at the initial stage of the fusion process due to the fusion proteins inducing spontaneous curvature in the membrane. As protein inclusions are embedded into the membrane, a highly curved surface forms in the center of the membrane; it facilitates the formation of short-lived hydrophobic defects and leads to the merger of the contact monolayers of the membranes. Membrane is considered as continuous liquid-crystal medium subject to elastic deformations. One deformational mode of splay is taken into account; energy is calculated in the quadratic approximation on this deformation. In case of positive spontaneous curvature induced by the protein there is no bulge on the top of the membrane despite high deviation of membrane shape from the equilibrium state. In case of negative spontaneous curvature a bulge is formed and its height and curvature increase with the increase of the membrane curvature in the initial state.  相似文献   

10.
—Incubation of bovine retina membranes with UDP-[14C]glucose resulted in the incorporation of [14C]glucose into endogenous α-1, 4-glucan proteins. The transferring system was concentrated in membranes that floated at 0.94 and 1.10m -sucrose when centrifuged in a discontinuous sucrose density gradient and was almost absent in the rod outer segment (ROS) and the 100, 000 g supernatant fractions. The glucan proteins labelled by incubation with the radioactive sugar nucleotide at micromolar concentrations were distinguished in two fractions by their solubilities in trichloroacetic acid (TCA): glucan protein-I (GP-I), insoluble in TCA, and glucan protein-II (GP-II), soluble in TCA and precipitable by ethanol from the TCA soluble fraction. GP-I and GP-II were precipitated by trichloroacetic acid-phosphotungstic acid (TCA-PTA). A third fraction, glucan protein-III (GP-III) was found when incubations were carried out with UDP-[14C]glucose at millimolar instead of micromolar concentrations. GP-III was soluble in TCA and in TCA-PTA and precipitable by ethanol from the TCA soluble fraction. GP-II was excluded from a Sephadex G-200 column and showed a greater size than GP-I in a Sepharose 2B column. The radioactive residues obtained from the glucan proteins after digestion with pronase were totally included in a Sephadex G-25 column and were of a greater size than the labelled residues released with salivary α-amylase. Only radioactive maltose was found after a-amylase treatment. When membranes containing labelled GP-I and GP-II were incubated with unlabelled UDP-glucose at millimolar concentrations, GP-I was converted into GP-II and GP-III was formed.  相似文献   

11.
Nonbilayer lipids can be defined as cone-shaped lipids with a preference for nonbilayer structures with a negative curvature, such as the hexagonal phase. All membranes contain these lipids in large amounts. Yet, the lipids in biological membranes are organized in a bilayer. This leads to the question: what is the physiological role of nonbilayer lipids? Different models are discussed in this review, with a focus on the lateral pressure profile within the membrane. Based on this lateral pressure model, predictions can be made for the effect of nonbilayer lipids on peripheral and integral membrane proteins. Recent data on the catalytic domain of Leader Peptidase and the potassium channel KcsA are discussed in relation to these predictions and in relation to the different models on the function of nonbilayer lipids. The data suggest a general mechanism for the interaction between nonbilayer lipids and membrane proteins via the membrane lateral pressure.  相似文献   

12.
D.M. Engelman  T.A. Steitz 《Cell》1981,23(2):411-422
We propose that the initial event in the secretion of proteins across membranes and their insertion into membranes is the spontaneous penetration of the hydrophobic portion of the bilayer by a helical hairpin. Energetic considerations of polypeptide structures in a nonpolar, lipid environment compared with an aqueous environment suggest that only α and 310 helices will be observed in the hydrophobic interior of membranes. Insertion of a polypeptide is accomplished by a hairpin structure composed of two helices, which will partition into membranes if the free energy arising from burying hydrophobic helical surfaces exceeds the free energy “cost” of burying potentially charged and hydrogen-bonding groups. We suggest, for example, that the hydrophobic leader peptide found in secreted proteins and in many membrane proteins forms one of these helices and is oriented in the membrane with its N terminus inside. In secreted proteins, the leader functions by pulling polar portions of a protein into the membrane as the second helix of the hairpin. The occurrence of all categories of membrane proteins can be rationalized by the hydrophobic or hydrophilic character of the two helices of the inserted hairpin and, for some integral membrane proteins, by events in which a single terminal helix is inserted. We propose that, because of the distribution of polar and nonpolar sequences in the polypeptide sequence, secretion and the insertion of membrane proteins are spontaneous processes that do not require the participation of additional specific membrane receptors or transport proteins.  相似文献   

13.
14.
Lateral phase separations and perpendicular transport in membranes   总被引:4,自引:0,他引:4  
A valinomycin-mediated potassium conductivity has been studied using a glass U-tube in which two aqueous compartments are separated by a fritted glass filter impregnated with valinomycin and one or more pure phospholipids. This system can be used to detect the beginning and end of lateral phase separations in binary lipid mixtures, and also demonstrates a pronounced maximum in electrical conductivity of dipalmitoyl phosphatidylcholine at the transition temperature, 41°C.  相似文献   

15.
SUMMARY: A graphics package has been developed to display all side chain conformation angles of the user selected residue in a given protein structure. The proposed package is incorporated with all the protein structures (solved using X-ray diffraction and NMR spectroscopy) available in the Protein Data Bank. The package displays the multiple conformations adopted by a single amino acid residue whose structure is solved and refined at very high resolution. In addition, it shows the percentage distribution of the side chain conformation angles in different rotameric states. AVAILABILITY: http://144.16.71.146/cap/  相似文献   

16.
The effects of lateral tension on the properties of membranes are often explained in comparison with analogous experiments on monolayers, which yield more detailed data. To calculate the effects of changes in tension on the composition of, or incorporation of amphiphiles into membranes we examine (i) the fidelity of the monolayer analogy, (ii) the range of possible tensions in a membrane, and the way in which tensions arise and (iii) the equilibrium partitioning of amphiphiles between aqueous solution and a bilayer under tension. We argue that, at the same areas per molecule, a monolayer at an n-alkane/water interface is a closer analogy of the lipid bilayer than a monolayer at an air/water interface. Next, we show from a thermodynamic argument that changes in membrane tension can affect the absorption of very large amphiphiles such as proteins, but that physiological tensions are unlikely to affect the absorption of lipids or drugs. Finally we consider the possibility that the measured bulk tension in a complicated membrane such as that of the erythrocyte may be larger than the local tension in the fluid mosaic portions, and suggest a model which explains the ability of the erythrocyte membrane to withstand much higher tensions than other biological membranes and lipid bilayers.  相似文献   

17.
C Zhu  SL Das  T Baumgart 《Biophysical journal》2012,102(8):1837-1845
The curvature of biological membranes is controlled by membrane-bound proteins. For example, during endocytosis, the sorting of membrane components, vesicle budding, and fission from the plasma membrane are mediated by adaptor and accessory proteins. Endophilin is a peripherally binding membrane protein that functions as an endocytic accessory protein. Endophilin's membrane tubulation capacity is well known. However, to understand the thermodynamic and mechanical aspects of endophilin function, experimental measurements need to be compared to quantitative theoretical models. We present measurements of curvature sorting and curvature generation of the endophilin A1 N-BAR domain on tubular membranes pulled from giant unilamellar vesicles. At low concentration, endophilin functions primarily as a membrane curvature sensor; at high concentrations, it also generates curvature. We determine the spontaneous curvature induced by endophilin and observe sigmoidal curvature/composition coupling isotherms that saturate at high membrane tensions and protein solution concentrations. The observation of saturation is supported by a strong dependence of lateral diffusion coefficients on protein density on the tether membrane. We develop a nonlinear curvature/composition coupling model that captures our experimental observations. Our model predicts a curvature-induced phase transition among two states with varying protein density and membrane curvature. This transition could act as a switch during endocytosis.  相似文献   

18.
Continuum mechanical tools are used to describe the deformation, energy density, and material symmetry of a lipid bilayer with spontaneous curvature. In contrast to conventional approaches in which lipid bilayers are modeled by material surfaces, here we rely on a three-dimensional approach in which a lipid bilayer is modeling by a shell-like body with finite thickness. In this setting, the interface between the leaflets of a lipid bilayer is assumed to coincide with the mid-surface of the corresponding shell-like body. The three-dimensional deformation gradient is found to involve the curvature tensors of the mid-surface in the spontaneous and the deformed states, the deformation gradient of the mid-surface, and the transverse deformation. Attention is also given to the coherency of the leaflets and to the area compatibility of the closed lipid bilayers (i.e., vesicles). A hyperelastic constitutive theory for lipid bilayers in the liquid phase is developed. In combination, the requirements of frame indifference and material symmetry yield a representation for the energy density of a lipid bilayer. This representation shows that three scalar invariants suffice to describe the constitutive response of a lipid bilayer exhibiting in-plane fluidity and transverse isotropy. In addition to exploring the geometrical and physical properties of these invariants, fundamental constitutively associated kinematical quantities are emphasized. On this basis, the effect on the energy density of assuming that the lipid bilayer is incompressible is considered. Lastly, a dimension reduction argument is used to extract an areal energy density per unit area from the three-dimensional energy density. This step explains the origin of spontaneous curvature in the areal energy density. Importantly, along with a standard contribution associated with the natural curvature of the lipid bilayer, our analysis indicates that constitutive asymmetry between the leaflets of the lipid bilayer gives rise to a secondary contribution to the spontaneous curvature.  相似文献   

19.
Positively charged polybasic domains are essential for recruiting multiple signaling proteins, such as Ras GTPases and Src kinase, to the negatively charged cellular membranes. Much less, however, is known about the influence of electrostatic interactions on the lateral dynamics of these proteins. We developed a dynamic Monte-Carlo automaton that faithfully simulates lateral diffusion of the adsorbed positively charged oligopeptides as well as the dynamics of mono- (phosphatidylserine) and polyvalent (PIP2) anionic lipids within the bilayer. In agreement with earlier results, our simulations reveal lipid demixing that leads to the formation of a lipid shell associated with the peptide. The computed association times and average numbers of bound lipids demonstrate that tetravalent PIP2 interacts with the peptide much more strongly than monovalent lipid. On the spatially homogeneous membrane, the lipid shell affects the behavior of the peptide only by weakly reducing its lateral mobility. However, spatially heterogeneous distributions of monovalent lipids are found to produce peptide drift, the velocity of which is determined by the total charge of the peptide-lipid complex. We hypothesize that this predicted phenomenon may affect the spatial distribution of proteins with polybasic domains in the context of cell-signaling events that alter the local density of monovalent anionic lipids.  相似文献   

20.
Phosphatidylglycerol (PG) is an anionic lipid commonly found in large proportions in the cell membranes of bacteria and plants and, to a lesser extent, in animal cells. PG plays an important role in the regulation and determination of the elastic properties of the membrane. Using small angle X-ray scattering experiments, we obtain that the monolayer spontaneous curvature of dioleoylphosphatidylglycerol (DOPG) is -1/150+/-0.021 nm(-1) when measured in 150 mM NaCl. When the experiments are carried out in 150 mM NaCl and 20mM MgCl(2), the value obtained for the monolayer spontaneous curvature is -1/8.7+/-0.037 nm(-1). These values are of importance in modelling the effects of curvature elastic stress in membrane lipid homeostasis in the bacterium Acholeplasma laidlawii [Alley, S.H., Barahona, M., Ces, O., Templer, R.H., in press. Biophysical regulation of lipid biosynthesis in the plasma membrane. Biophys. J.] and indicate that divalent cations can play a significant role in altering curvature elastic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号