首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA curvature influences the internal motions of supercoiled DNA.   总被引:3,自引:1,他引:3       下载免费PDF全文
W Kremer  K Klenin  S Diekmann    J Langowski 《The EMBO journal》1993,12(11):4407-4412
We present evidence that short curved DNA segments can act as mediators for the ordering of large domains in superhelical DNA. Using a non-invasive solution method (dynamic light scattering), we investigated the effect of permanently curved inserts on the solution structure and on the internal motions of superhelical plasmid DNA. We find that the dynamics of superhelical DNA are strongly influenced by sequence- or protein-induced bending: in superhelical plasmids containing curved inserts the amplitude of the internal motion is lower than that of non-curved controls. Furthermore, the relative arrangement of curved sequences in the plasmids can influence the overall shape of the superhelical DNA. On linearized forms of the plasmids, these effects are not observed.  相似文献   

2.
Human Topoisomerase I (hTopo I) have been known as a potential target for cancer therapy. A series of duplex DNA with different intrinsic curvatures have been designed as inhibitors to hTopo I. The activities of hTopo I on relaxing supercoiled plasmid pUC 19 are apparently diminished in the presence of the curved DNA. More potent inhibitions and smaller IC(50) are achieved by duplex DNA with higher curvatures. EMSA indicates that hTopo I can recognize the curved DNA through binding interactions. Our studies demonstrate that the activity of hTopo I can be modulated by the intrinsic curvature of linear DNA and provide a new avenue to design curved DNA as hTopo I inhibitors with high therapeutic efficiency and low toxicity.  相似文献   

3.
DNA looping.   总被引:10,自引:2,他引:10       下载免费PDF全文
  相似文献   

4.
The lack of a rigorous analytical theory for DNA looping has caused many DNA-loop-mediated phenomena to be interpreted using theories describing the related process of DNA cyclization. However, distinctions in the mechanics of DNA looping versus cyclization can have profound quantitative effects on the thermodynamics of loop closure. We have extended a statistical mechanical theory recently developed for DNA cyclization to model DNA looping, taking into account protein flexibility. Notwithstanding the underlying theoretical similarity, we find that the topological constraint of loop closure leads to the coexistence of multiple classes of loops mediated by the same protein structure. These loop topologies are characterized by dramatic differences in twist and writhe; because of the strong coupling of twist and writhe within a loop, DNA looping can exhibit a complex overall helical dependence in terms of amplitude, phase, and deviations from uniform helical periodicity. Moreover, the DNA-length dependence of optimal looping efficiency depends on protein elasticity, protein geometry, and the presence of intrinsic DNA bends. We derive a rigorous theory of loop formation that connects global mechanical and geometric properties of both DNA and protein and demonstrates the importance of protein flexibility in loop-mediated protein-DNA interactions.  相似文献   

5.
In purple bacteria, photosynthesis is carried out on large indentations of the bacterial plasma membrane termed chromatophores. Acting as primitive organelles, chromatophores are densely packed with the membrane proteins necessary for photosynthesis, including light harvesting complexes LH1 and LH2, reaction center (RC), and cytochrome bc1. The shape of chromatophores is primarily dependent on species, and is typically spherical or flat. How these shapes arise from the protein-protein and protein-membrane interactions is still unknown. Now, using molecular dynamics simulations, we have observed the dynamic curvature of membranes caused by proteins in the chromatophore. A membrane-embedded array of LH2s was found to relax to a curved state, both for LH2 from Rps. acidophila and a homology-modeled LH2 from Rb. sphaeroides. A modeled LH1-RC-PufX dimer was found to develop a bend at the dimerizing interface resulting in a curved shape as well. In contrast, the bc1 complex, which has not been imaged yet in native chromatophores, did not induce a preferred membrane curvature in simulation. Based on these results, a model for how the different photosynthetic proteins influence chromatophore shape is presented.  相似文献   

6.
DNA looping alters local DNA conformation during transcription   总被引:5,自引:0,他引:5  
  相似文献   

7.
The entropy loss due to the formation of one or multiple loops in circular and linear DNA chains is calculated from a scaling approach in the limit of long chain segments. The analytical results allow us to obtain a fast estimate for the entropy loss for a given configuration. Numerical values obtained for some examples suggest that the entropy loss encountered in loop closure in typical genetic switches may become a relevant factor in comparison to both k(B)T and typical bond energies in biopolymers, which has to be overcome by the released bond energy between the looping contact sites.  相似文献   

8.
9.
Enhancer-promoter interactions in eukaryotic genomes are often controlled by sequence elements that block the actions of enhancers. Although the experimental evidence suggests that those sequence elements contribute to forming loops of chromatin, the molecular mechanism of how such looping affects the enhancer-blocking activity is still largely unknown. In this article, the roles of DNA looping in enhancer blocking are investigated by numerically simulating the DNA conformation of a prototypical model system of gene regulation. The simulated results show that the enhancer function is indeed blocked when the enhancer is looped out so that it is separated from the promoter, which explains experimental observations of gene expression in the model system. The local structural distortion of DNA caused by looping is important for blocking, so the ability of looping to block enhancers can be lost when the loop length is much larger than the persistence length of the chain.  相似文献   

10.
11.
Integration host factor alters LacI-induced DNA looping   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
14.
15.
16.
Many proteins that interact with DNA perform or enhance their specific functions by binding simultaneously to multiple target sites, thereby inducing a loop in the DNA. The dynamics and energies involved in this loop formation influence the reaction mechanism. Tethered particle motion has proven a powerful technique to study in real time protein-induced DNA looping dynamics while minimally perturbing the DNA–protein interactions. In addition, it permits many single-molecule experiments to be performed in parallel. Using as a model system the tetrameric Type II restriction enzyme SfiI, that binds two copies of its recognition site, we show here that we can determine the DNA–protein association and dissociation steps as well as the actual process of protein-induced loop capture and release on a single DNA molecule. The result of these experiments is a quantitative reaction scheme for DNA looping by SfiI that is rigorously compared to detailed biochemical studies of SfiI looping dynamics. We also present novel methods for data analysis and compare and discuss these with existing methods. The general applicability of the introduced techniques will further enhance tethered particle motion as a tool to follow DNA–protein dynamics in real time.  相似文献   

17.
18.
We have assessed the effects of DNA curvature on pyrimidine dimer (PD) formation by examining the pattern of PD formation in DNA held in a loop by lambda repressor. The loop region was composed of diverse DNA sequences such that potential PD sites occurred throughout the loop. PD formation in the loop occurred with peaks at approximately 10 base intervals, just 3' of where the bending of the DNA was inferred to be toward the major groove. This relationship between the peaks and the DNA curvature is essentially identical to that observed in the nucleosome. This indicates that DNA curvature is the major source of the periodicity of PD formation in the nucleosome, and supports an earlier model of the conformation of nucleosomal DNA based on PD formation. DNA loops containing diverse sequences should be of general value for assessing the effects of DNA curvature on DNA modification by other agents used to probe DNA-protein interactions and DNA conformation.  相似文献   

19.
The remote control of transcription, DNA looping and DNA compaction.   总被引:1,自引:0,他引:1  
M Amouyal 《Biochimie》1991,73(10):1261-1268
  相似文献   

20.
Several factors cause predictable changes in heart rate of crustaceans thus affecting basic heart rhythms. In decapod crustaceans these consist of: many internal factors including influences from neural and neurohormonal systems and chemosensory influences; many external factors including startling stimuli and other disturbance; ventilatory (scaphognathite) reversals; tail flips and other postural movements including locomotor activity; and variations in environmental factors such as oxygen level, temperature and air-exposure. In many cases the initial response involves temporary bradycardia or cardiac arrest. These responses may quickly facilitate to sustained low level stimuli although maintained strong stimulation will eventually be associated with cardio-acceleration and escape responses. Measurement of change in heart rate alone is rarely a sensible monitor of cardiac performance in crustaceans since simultaneous changes in cardiac stroke volume occur which may confound diagnosis. Hypoxia for instance causes decrease in heart rate of adult crustaceans but the apparent decrease in cardiac output is offset or reversed by increase in stroke volume. Concomitant changes occur in cardiac output and in the proportion of cardiac output which is delivered to particular tissues. In fact change in heart rhythm is only one factor in a complex suite of responses involving several physiological systems which compensate uniquely for changes in environmental or other stimuli. Both neural and neuro-hormonal factors are known to play a role in control of these complex responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号