首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because transmembrane (TM) protein localization, or nonlocalization, in ordered membrane domains (rafts) is a key to understanding membrane domain function, it is important to define the origin of protein-raft interaction. One hypothesis is that a tight noncovalent attachment of TM proteins to lipids that have a strong affinity for ordered domains can be sufficient to induce raft-protein interaction. The sterol-binding protein perfringolysin O (PFO) was used to test this hypothesis. PFO binds both to sterols that tend to localize in ordered domains (e.g., cholesterol), and to those that do not (e.g., coprostanol), but it does not bind to epicholesterol, a raft-promoting 3α-OH sterol. Using a fluorescence resonance energy transfer assay in model membrane vesicles containing coexisting ordered and disordered lipid domains, both TM and non-TM forms of PFO were found to concentrate in ordered domains in vesicles containing high and low-Tm lipids plus cholesterol or 1:1 (mol/mol) cholesterol/epicholesterol, whereas they concentrate in disordered domains in vesicles containing high-Tm and low-Tm lipids plus 1:1 (mol/mol) coprostanol/epicholesterol. Combined with previous studies this behavior indicates that TM protein association with ordered domains is dependent upon both the association of the protein-bound sterol with ordered domains and hydrophobic match between TM segments and rafts.  相似文献   

2.
Some lipid mixtures form membranes containing submicroscopic (nanodomain) ordered lipid domains (rafts). Some of these nanodomains are so small (radius <5 nm) that they cannot be readily detected with Förster resonance energy transfer (FRET)-labeled lipid pairs with large Ro. We define such domains as ultrananodomains. We studied the effect of lipid structure/composition on the formation of ultrananodomains in lipid vesicles using a dual-FRET-pair approach in which only one FRET pair had Ro values that were sufficiently small to detect the ultrananodomains. Using this approach, we measured the temperature dependence of domain and ultrananodomain formation for vesicles composed of various mixtures containing a high-Tm lipid (brain sphingomyelin (SM)) or dipalmitoyl phosphatidylcholine (DPPC)), low-Tm lipid (dioleoylphosphatidylcholine (DOPC) or 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC)), and a lower (28 mol %) or higher (38 mol %) cholesterol concentration. For every lipid combination tested, the thermal stabilities of the ordered domains were similar, in agreement with our prior studies. However, the range of temperatures over which ultrananodomains formed was highly lipid-type dependent. Overall, vesicles that were closest to mammalian plasma membrane in lipid composition (i.e., with brain SM, POPC, and/or higher cholesterol) formed ultrananodomains in preference to larger domains over the widest temperature range. Relative to DPPC, the favorable effect of SM on ultrananodomain formation versus larger domains was especially large. In addition, the favorable effect of a high cholesterol concentration, and of POPC versus DOPC, on the formation of ultrananodomains versus larger domains was greater in vesicles containing SM than in those containing DPPC. We speculate that it is likely that natural mammalian lipids are tuned to maximize the tendency to form ultrananodomains relative to larger domains. The observation that domain size is more sensitive than domain formation to membrane composition has implications for how membrane domain properties may be regulated in vivo.  相似文献   

3.
Sphingolipids containing very long acyl chains are abundant in certain specialized tissues and minor components of plasma membranes in most mammalian cells. There are cellular processes in which these sphingolipids are required, and the function seems to be mediated through sphingolipid-rich membrane domains. This study was conducted to explore how very long acyl chains of sphingolipids influence their lateral distribution in membranes. Differential scanning calorimetry showed that 24:0- and 24:1-sphingomyelins, galactosylceramides and glucosylceramides exhibited complex thermotropic behavior and partial miscibility with palmitoyl sphingomyelin. The Tm was decreased by about 20 °C for all 24:1-sphingolipids compared to the corresponding 24:0-sphingolipids. The ability to pack tightly with ordered and extended acyl chains is a necessity for membrane lipids to partition into ordered domains in membranes and thus the 24:1-sphingolipids appeared less likely to do so. Fluorescence quenching measurements showed that the 24:0-sphingolipids formed ordered domains in multicomponent membranes, both as the only sphingolipid and mixed with palmitoyl sphingomyelin. These domains had a high packing density which appeared to hinder the partitioning of sterols into them, as reported by the fluorescent cholesterol analog cholestatrienol. 24:0-SM was, however, better able to accommodate sterol than the glycosphingolipids. The 24:1-sphingolipids could, depending on head group structure, either stabilize or disrupt ordered sphingolipid/cholesterol domains. We conclude that very long chain sphingolipids, when present in biological membranes, may affect the physical properties of or the distribution of sterols between lateral domains. It was also evident that not only the very long acyl chain but also the specific molecular structure of the sphingolipids was of importance for their membrane properties.  相似文献   

4.
Mixtures of unsaturated lipids, sphingolipids, and cholesterol form coexisting liquid-disordered and sphingolipid and cholesterol-rich liquid-ordered (Lo) phases in water. The detergent Triton X-100 does not readily solubilize Lo domains, but does solubilize liquid-disordered domains, and is commonly used to prepare detergent-resistant membranes from cells and model membranes. However, it has been proposed that in membranes with mixtures of sphingomyelin (SM), 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC), and cholesterol Triton X-100 may induce Lo domain formation, and therefore detergent-resistant membranes may not reflect the presence of preexisting domains. To examine this hypothesis, the effect of Triton on Lo domain formation was measured in SM/POPC/cholesterol vesicles. Nitroxide quenching methods that can detect ordered nanodomains with radii >12 Å showed that in the absence of Triton X-100 this mixture formed ordered state domains that melt with a midpoint (= Tmid) at ∼45°C. However, Tmid was lower when detected using various fluorescence resonance energy transfer (FRET) pairs. Furthermore, the Tmid value was Ro dependent, and decreased as Ro increased. Because FRET can only readily detect domains with radii >Ro, this result can be explained by domain radii that are close to Ro and decrease as temperature increases. An analysis of FRET and quenching data suggests that nanodomain radius gradually decreases from ≥150 Å to <40 Å as temperature increases from 10 to 45°C. Interestingly, the presence of Triton X-100 or a transmembrane-type peptide did not stabilize ordered state formation when detected by nitroxide quenching, i.e., did not increase Tmid. However, FRET-detected Tmid did increase in the presence of Triton X-100 or a transmembrane peptide, indicating that both increased domain size. Controls showed that the results could not be accounted for by probe-induced perturbations. Thus, SM/POPC/cholesterol, a mixture similar to that in the outer leaflet of plasma membranes, forms nanodomains at physiological temperatures, and TX-100 does not induce domain formation or increase the fraction of the bilayer in the ordered state, although it does increase domain size by coalescing preexisting domains.  相似文献   

5.
Purified bovine rhodopsin was reconstituted into vesicles consisting of 1-stearoyl-2-oleoyl phosphatidylcholine or 1-stearoyl-2-docosahexaenoyl phosphatidylcholine with and without 30 mol % cholesterol. Rhodopsin stability was examined using differential scanning calorimetry (DSC). The thermal unfolding transition temperature (Tm) of rhodopsin was scan rate-dependent, demonstrating the presence of a rate-limited component of denaturation. The activation energy of this kinetically controlled process (Ea) was determined from DSC thermograms by four separate methods. Both Tm and Ea varied with bilayer composition. Cholesterol increased the Tm both the presence and absence of docosahexaenoic acid acyl chains (DHA). In contrast, cholesterol lowered Ea in the absence of DHA, but raised Ea in the presence of 20 mol % DHA-containing phospholipid. The relative acyl chain packing order was determined from measurements of diphenylhexatriene fluorescence anisotropy decay. The Tm for thermal unfolding was inversely related to acyl chain packing order. Rhodopsin kinetic stability (Ea) was reduced in highly ordered or disordered membranes. Maximal kinetic stability was found within the range of acyl chain order found in native bovine rod outer segment disk membranes. The results demonstrate that membrane composition has distinct effects on the thermal versus kinetic stabilities of membrane proteins, and suggests that a balance between membrane constituents with opposite effects on acyl chain packing, such as DHA and cholesterol, may be required for maximum protein stability.  相似文献   

6.
In this study we have prepared ceramide phosphoserine (CerPS) and examined its sterol-interacting properties. CerPS is a hydrogen-bonding sphingolipid, but its head group differs from that found in sphingomyelin (SM). Based on diphenylhexatriene steady-state anisotropy measurements, we observed that fully hydrated N-palmitoyl CerPS had a gel-to-liquid crystalline phase transition temperature of about 51 °C in 50 mM sodium phosphate buffer (pH 7.4). This was close to the Tm measured for 1,2-dipalmitoyl-sn-glycero-3-phosphoserine (DPPS) bilayers (Tm 50.5 °C). Based on cholestatrienol (CTL) quenching experiments in liquid disordered ternary bilayers (containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphcholine; POPC), cholesterol/CTL formed sterol-enriched ordered domains with CerPS. These had similar thermostability as the sterol domains formed with N-palmitoyl SM. Cholesterol failed to form sterol-enriched ordered domains with DPPS under comparable conditions. Based on the equilibrium partitioning of CTL, we observed that the affinity of sterol for bilayers containing POPC/CerPS/cholesterol (6:3:1 by mol) was much higher than the affinity measured for control fluid POPC/cholesterol (9:1 by mol) bilayers, but slightly less than seen for comparable PSM-containing bilayers. We conclude that the phosphoserine head group was less efficient than the phosphocholine head group in stabilizing sterol/sphingolipid interaction. However, hydrogen bonding apparently can overcome some of the negative effects of the phosphoserine head group, since CerPS interacted more favorably with cholesterol compared to DPPS.  相似文献   

7.
The interactions between a drug and lipids may be critical for the pharmacological activity. We previously showed that the ability of a fluoroquinolone antibiotic, ciprofloxacin, to induce disorder and modify the orientation of the acyl chains is related to its propensity to be expelled from a monolayer upon compression [1]. Here, we compared the binding of ciprofloxacin on DPPC and DPPG liposomes (or mixtures of phospholipids [DOPC:DPPC], and [DOPC:DPPG]) using quasi-elastic light scattering and steady-state fluorescence anisotropy. We also investigated ciprofloxacin effects on the transition temperature (Tm) of lipids and on the mobility of phosphate head groups using Attenuated Total Reflection Fourier Transform Infrared-Red Spectroscopy (ATR-FTIR) and 31P Nuclear Magnetic Resonance (NMR) respectively. In the presence of ciprofloxacin we observed a dose-dependent increase of the size of the DPPG liposomes whereas no effect was evidenced for DPPC liposomes. The binding constants Kapp were in the order of 105 M− 1 and the affinity appeared dependent on the negative charge of liposomes: DPPG > DOPC:DPPG (1:1; M:M) > DPPC > DOPC:DPPC (1:1; M:M). As compared to the control samples, the chemical shift anisotropy (Δσ) values determined by 31P NMR showed an increase of 5 and 9 ppm for DPPC:CIP (1:1; M:M) and DPPG:CIP (1:1; M:M) respectively. ATR-FTIR experiments showed that ciprofloxacin had no effect on the Tm of DPPC but increased the order of the acyl chains both below and above this temperature. In contrast, with DPPG, ciprofloxacin induced a marked broadening effect on the transition with a decrease of the acyl chain order below its Tm and an increase above this temperature. Altogether with the results from the conformational analysis, these data demonstrated that the interactions of ciprofloxacin with lipids depend markedly on the nature of their phosphate head groups and that ciprofloxacin interacts preferentially with anionic lipid compounds, like phosphatidylglycerol, present at a high content in these membranes.  相似文献   

8.
The lateral organization of lipids and proteins in cell membranes is recognized as an important factor in several cellular processes. Cholesterol is thought to function as a modulator of the lateral segregation of lipids into cholesterol-poor and cholesterol-rich domains. We investigated how the affinity of cholesterol for different phospholipids, as seen in cholesterol partitioning between methyl-β-cyclodextrin and large unilamellar vesicles, was reflected in the lateral organization of lipids in complex bilayers. We especially wanted to determine how the low-Tm lipid affected the lateral structure. Partition experiments showed that cholesterol had a higher affinity for N-oleoyl-sphingomyelin (OSM) than for palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers, but the highest preference was for N-palmitoyl-sphingomyelin (PSM)-containing bilayers. Partial phase diagrams of POPC/PSM/cholesterol and OSM/PSM/cholesterol bilayers at 23°C and 37°C were used to gain insight into the lateral organization of lipids in bilayers. Analysis of phase diagrams revealed that the phospholipid composition of cholesterol-poor and cholesterol-rich domains reflected the affinity that cholesterol exhibited toward bilayers composed of different lipids. Therefore, the determined affinity of cholesterol for different phospholipid bilayers was useful in predicting the cholesterol-induced lateral segregation of lipids in complex bilayers.  相似文献   

9.
The pulsed field gradient (pfg)-NMR method for measurements of translational diffusion of molecules in macroscopically aligned lipid bilayers is described. This technique is proposed to have an appreciable potential for investigations in the field of lipid and membrane biology. Transport of molecules in the plane of the bilayer can be successfully studied, as well as lateral phase separation of lipids and their dynamics within the bilayer organizations. Lateral diffusion coefficients depend on lipid packing and acyl chain ordering and investigations of order parameters of perdeuterated acyl chains, using 2H NMR quadrupole splittings, are useful complements. In this review we summarize some of our recent achievements obtained on lipid membranes. In particular, bilayers exhibiting two-phase coexistence of liquid disordered (ld) and liquid ordered (lo) phases are considered in detail. Methods for obtaining good oriented lipid bilayers, necessary for the pfg-NMR method to be efficiently used, are also briefly described. Among our major results, besides determinations of ld and lo phases, belongs the finding that the lateral diffusion is the same for all components, independent of the molecular structure (including cholesterol (CHOL)), if they reside in the same domain or phase in the membrane. Furthermore, quite unexpectedly CHOL seems to partition into the ldand lo phases to roughly the same extent, indicating that CHOL has no strong preference for any of these phases, i.e. CHOL seems to have similar interactions with all of the lipids. We propose that the lateral phase separation in bilayers containing one high-Tm and one low-Tm lipid together with CHOL is driven by the increasing difficulty of incorporating an unsaturated or prenyl lipid into the highly ordered bilayer formed by a saturated lipid and CHOL, i.e. the phase transition is entropy driven to keep the disorder of the hydrocarbon chains of the unsaturated lipid.  相似文献   

10.
Ordered lipid domains (rafts) are generally considered to be features of eukaryotic cells, but ordered lipid domains formed by cholesterol lipids have been identified in bacteria from the genus Borrelia, and similar cholesterol lipids exist in the bacterium Helicobacter pylori. To determine whether H. pylori lipids could form ordered membrane domains, we investigated domain formation in aqueous dispersions of H. pylori whole lipid extracts, individual H. pylori lipids, or defined mixtures of H. pylori lipids and other membrane-forming lipids. DPH (1,6-diphenyl-1,3,5-hexatriene) anisotropy measurements were used to assay membrane order and FRET (Förster resonance energy transfer) was used to detect the presence of co-existing ordered and disordered domains. We found that H. pylori membrane lipid extracts spontaneously formed lipid domains. Domain formation was more stable when lipids were extracted from H. pylori cells grown in the presence of cholesterol. Certain isolated H. pylori lipids (by themselves or when mixed with other lipids) also had the ability to form ordered domains. To be specific, H. pylori cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside (CAG) and cholesterol-6-O-phosphatidyl-α-D-glucopyranoside (CPG) had the ability to form and/or stabilize ordered domain formation, while H. pylori phosphatidylethanolamine did not, behaving similarly to unsaturated phosphatidylethanolamines. We conclude that specific H. pylori cholesterol lipids have a marked ability to form ordered lipid domains.  相似文献   

11.
Equinatoxin II (EqtII) is a pore-forming protein from Actinia equina that lyses red blood cell and model membranes. Lysis is dependent on the presence of sphingomyelin (SM) and is greatest for vesicles composed of equimolar SM and phosphatidylcholine (PC). Since SM and cholesterol (Chol) interact strongly, forming domains or “rafts” in PC membranes, 31P and 2H solid-state NMR were used to investigate changes in the lipid order and bilayer morphology of multilamellar vesicles comprised of different ratios of dimyristoylphosphatidylcholine (DMPC), SM and Chol following addition of EqtII. The toxin affects the phase transition temperature of the lipid acyl chains, causes formation of small vesicle type structures with increasing temperature, and changes the T2 relaxation time of the phospholipid headgroup, with a tendency to order the liquid disordered phases and disorder the more ordered lipid phases. The solid-state NMR results indicate that Chol stabilizes the DMPC bilayer in the presence of EqtII but leads to greater disruption when SM is in the bilayer. This supports the proposal that EqtII is more lytic when both SM and Chol are present as a consequence of the formation of domain boundaries between liquid ordered and disordered phases in lipid bilayers leading to membrane disruption.  相似文献   

12.
Robust voltammetric responses were obtained for wild-type and Y72F/H83Q/Q107H/Y108F azurins adsorbed on CH3(CH2)nSH:HO(CH2)mSH (n = m = 4, 6, 8, 11; n = 13, 15 m = 11) self-assembled-monolayer (SAM) gold electrodes in acidic solution (pH 4.6) at high ionic strengths. Electron-transfer (ET) rates do not vary substantially with ionic strength, suggesting that the SAM methyl headgroup binds to azurin by hydrophobic interactions. The voltammetric responses for both proteins at higher pH values (>4.6-11) also were strong. A binding model in which the SAM hydroxyl headgroup interacts with the Asn47 carboxamide accounts for the relatively strong coupling to the copper center that can be inferred from the ET rates. Of particular interest is the finding that rate constants for electron tunneling through n = 8, 13 SAMs are higher at pH 11 than those at pH 4.6, possibly owing to enhanced coupling of the SAM to Asn47 caused by deprotonation of nearby surface residues.  相似文献   

13.
We report a combined dynamic light scattering (DLS) and neutron spin-echo (NSE) study on the local bilayer undulation dynamics of phospholipid vesicles composed of 1,2-dimyristoyl-glycero-3-phosphatidylcholine (DMPC) under the influence of temperature and the additives cholesterol and trehalose. The additives affect vesicle size and self-diffusion. Mechanical properties of the membrane and corresponding bilayer undulations are tuned by changing lipid headgroup or acyl chain properties through temperature or composition. On the local length scale, changes at the lipid headgroup influence the bilayer bending rigidity κ less than changes at the lipid acyl chain: We observe a bilayer softening around the main phase transition temperature Tm of the single lipid system, and stiffening when more cholesterol is added, in concordance with literature. Surprisingly, no effect on the mechanical properties of the vesicles is observed upon the addition of trehalose.  相似文献   

14.
To understand the role of sphingomyelinase (SMase) in the function of biological membranes, we have investigated the effect of conversion of sphingomyelin (SM) to ceramide (Cer) on the assembly of domains in giant unilamellar vesicles (GUVs). The GUVs were prepared from mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), N-palmitoly-d-erythro-sphingosine (C16Cer), N-palmitoyl-d-erythro-sphingosylphosphorylcholine (C16SM) and cholesterol. The amounts of DOPC, sum of C16Cer and C16SM, and cholesterol were kept constant (the ratio of these four lipids is shown as 1:X:1-X:1 (molar ratio), i.e., X is C16Cer/(C16Cer + C16SM)). Shape and distribution of domains formed in the GUVs were monitored by a fluorescent lipid, Texas Red 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (0.1 mol%). In GUVs containing low C16Cer (X = 0 and 0.25), round-shaped domains labeled by the fluorescent lipid were present, suggesting coexistence of liquid-ordered and disordered domains. In GUVs containing intermediate Cer concentration (X = 0.5), the fluorescent domain covered most of GUV surface, which was surrounded by gel-like domains. Differential scanning calorimetry of multilamellar vesicles prepared in the presence of higher Cer concentration (X ≥ 0.5) suggested existence of a Cer-enriched gel phase. Video microscopy showed that the enzymatic conversion of SM to Cer caused rapid change in the domain structure: several minutes after the SMase addition, the fluorescent region spread over the GUV surface, within which regions with darker contrast existed. Image-based measurement of generalized polarization (GP) of 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan), which is related to the acyl chain ordering of the lipids, was performed. Before the SMase treatment domains with high (0.65) and low (below 0.4) GP values coexisted, presumably reflecting the liquid-ordered and disordered domains; after the SMase treatment regions with intermediate GP values (0.5) and smaller regions with higher GP values (0.65) were present. Generation of Cer thus caused a phase transition from liquid-ordered and disordered phases to a gel and liquid phase.  相似文献   

15.
Ceramides are sphingolipids that greatly stabilize ordered membrane domains (lipid rafts), and displace cholesterol from them. Ceramide-rich rafts have been implicated in diverse biological processes. Because ceramide analogues have been useful for probing the biological function of ceramide, and may have biomedical applications, it is important to characterize how ceramide structure affects membrane properties, including lipid raft stability and composition. In this report, fluorescence quenching assays were used to evaluate the effect of analogues of ceramide with different N-acyl chains or different sphingoid backbones on raft stability and sterol content. The effect of replacing 18 mol% of sphingomyelin (SM) with ceramide in vesicles composed of a 1:1 (mol:mol) mixture of SM and dioleoylphosphatidylcholine (DOPC), with or without 25 mol% sterol, was examined. In the absence of sterol, the thermal stability of the SM-rich ordered domains increased with ceramide N-acyl chain length in the order C2:0 ∼ C6:0 ∼ C8:0 < no ceramide < C12:0 < C16:0. In vesicles containing 25 mol% cholesterol (1:1:0.66 sphingolipid:DOPC:cholesterol), the dependence of raft stability on ceramide N-acyl chain length increased in the order C8:0 ∼ C6:0 < C2:0 < C12:0 ∼ no ceramide < C16:0. We also studied the stability of lipid rafts in the presence of N-lauroyl- and N-palmitoylsphingosine analogues containing altered structures in or near the polar portion of the sphingoid base. In almost all cases, the analogues stabilized rafts to about the same degree as a normal ceramide containing the same acyl chain. The only exception was N-palmitoyl-4D-ribophytosphingosine, which was very strongly raft-stabilizing. We conclude that variations in sphingoid base structure induce only insignificant changes in raft properties. N-Lauroyl and N-palmitoylsphingosine and their analogues displaced sterol from rafts to a significant degree. Both C12:0 and C16:0 analogues of ceramide may be good mimics of natural ceramide, and useful for cellular studies in which maintenance of the normal physical properties of ceramide are important.  相似文献   

16.
Thermotropic phase behavior of diacylphosphatidylcholine (CnPC)–cholesterol binary bilayers (n = 14–16) was examined by fluorescence spectroscopy using 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and differential scanning calorimetry. The former technique can detect structural changes of the bilayer in response to the changes in polarity around Prodan molecules partitioned in a relatively hydrophilic region of the bilayer, while the latter is sensitive to the conformational changes of the acyl chains. On the basis of the data from both techniques, we propose possible temperature T–cholesterol composition Xch phase diagrams for these binary bilayers. A notable feature of our phase diagrams, including our previous results for diheptadecanoylphosphatidylcholine (C17PC) and distearoylphosphatidylcholine (C18PC), is that there is a peritectic-like point around Xch = 0.15, which can be interpreted as indicating the formation of a 1:6-complex of cholesterol and CnPCs within the binary bilayer irrespective of the acyl chain length. We could give a reasonable explanation for such complex formation using the modified superlattice view. Our results also showed that the Xch value of the abolition of the main transition is almost constant for n = 14–17 (ca. 0.33), while it increases to ca. 0.50 for n = 18. By contrast, a biphasic n-dependence of Xch was observed for the abolition of the pretransition, suggesting that there are at least two antagonistic n-dependent factors. We speculate that this could be explained by the enhancement of the van der Waals interaction with increases in n and the weakening of the repulsion between the neighboring headgroups with decreases in n.  相似文献   

17.
Sphingomyelins (SMs) and sterols are important constituents of the plasma membrane and have also been identified as major lipid components in membrane rafts. Using SM analogs with decreasing headgroup methylation, we systemically analyzed the effect of headgroup size on membrane properties and interactions with cholesterol. An increase in headgroup size resulted in a decrease in the main phase transition. Atom-scale molecular-dynamics simulations were in agreement with the fluorescence anisotropy experiments, showing that molecular areas increased and acyl chain order decreased with increasing headgroup size. Furthermore, the transition temperatures were constantly higher for SM headgroup analogs compared to corresponding phosphatidylcholine headgroup analogs. The sterol affinity for phospholipid bilayers was assessed using a sterol-partitioning assay and an increased headgroup size increased sterol affinity for the bilayer, with a higher sterol affinity for SM analogs as compared to phosphatidylcholine analogs. Moreover, the size of the headgroup affected the formation and composition of cholesterol-containing ordered domains. Palmitoyl-SM (the largest headgroup) seemed to attract more cholesterol into ordered domains than the other SM analogs with smaller headgroups. The ordering and condensing effect of cholesterol on membrane lipids was also largest for palmitoyl-SM as compared to the smaller SM analogs. The results show that the size of the SM headgroup is crucially important for SM-SM and SM-sterol interactions. Our results further emphasize that interfacial electrostatic interactions are important for stabilizing cholesterol interactions with SMs.  相似文献   

18.
Based on curvature energy considerations, nonbilayer phase-forming phospholipids in excess water should form stable bicontinuous inverted cubic (QII) phases at temperatures between the lamellar (Lα) and inverted hexagonal (HII) phase regions. However, the phosphatidylethanolamines (PEs), which are a common class of biomembrane phospholipids, typically display direct Lα/HII phase transitions and may form intermediate QII phases only after the temperature is cycled repeatedly across the Lα/HII phase transition temperature, TH, or when the HII phases are cooled from T > TH. This raises the question of whether models of inverted phase stability, which are based on curvature energy alone, accurately predict the relative free energy of these phases. Here we demonstrate the important role of a noncurvature energy contribution, the unbinding energy of the Lα phase bilayers, gu, that serves to stabilize the Lα phase relative to the nonlamellar phases. The planar Lα phase bilayers must separate for a QII phase to form and it turns out that the work of their unbinding can be larger than the curvature energy reduction on formation of QII phase from Lα at temperatures near the Lα/QII transition temperature (TQ). Using gu and elastic constant values typical of unsaturated PEs, we show that gu is sufficient to make TQ > TH for the latter lipids. Such systems would display direct Lα → HII transitions, and a QII phase might only form as a metastable phase upon cooling of the HII phase. The gu values for methylated PEs and PE/phosphatidylcholine mixtures are significantly smaller than those for PEs and increase TQ by only a few degrees, consistent with observations of these systems. This influence of gu also rationalizes the effect of some aqueous solutes to increase the rate of QII formation during temperature cycling of lipid dispersions. Finally, the results are relevant to protocols for determining the Gaussian curvature modulus, which substantially affects the energy of intermediates in membrane fusion and fission. Recently, two such methods were proposed based on measuring TQ and on measuring QII phase unit cell dimensions, respectively. In view of the effect of gu on TQ that we describe here, the latter method, which does not depend on the value of gu, is preferable.  相似文献   

19.
The structural and dynamical properties of lipid membranes rich in phospholipids and cholesterol are known to be strongly affected by the unsaturation of lipid acyl chains. We show that not only unsaturation but also the position of a double bond has a pronounced effect on membrane properties. We consider how cholesterol interacts with phosphatidylcholines comprising two 18-carbon long monounsaturated acyl chains, where the position of the double bond is varied systematically along the acyl chains. Atomistic molecular dynamics simulations indicate that when the double bond is not in contact with the cholesterol ring, and especially with the C18 group on its rough β-side, the membrane properties are closest to those of the saturated bilayer. However, any interaction between the double bond and the ring promotes membrane disorder and fluidity. Maximal disorder is found when the double bond is located in the middle of a lipid acyl chain, the case most commonly found in monounsaturated acyl chains of phospholipids. The results suggest a cholesterol-mediated lipid selection mechanism in eukaryotic cell membranes. With saturated lipids, cholesterol promotes the formation of highly ordered raft-like membrane domains, whereas domains rich in unsaturated lipids with a double bond in the middle remain highly fluid despite the presence of cholesterol.  相似文献   

20.
The widely held view that the maximum efficiency of a photosynthetic pigment system is given by the Carnot cycle expression (1 − T/Tr) for energy transfer from a hot bath (radiation at temperature Tr) to a cold bath (pigment system at temperature T) is critically examined and demonstrated to be inaccurate when the entropy changes associated with the microscopic process of photon absorption and photochemistry at the level of single photosystems are considered. This is because entropy losses due to excited state generation and relaxation are extremely small (ΔS ? T/Tr) and are essentially associated with the absorption-fluorescence Stokes shift. Total entropy changes associated with primary photochemistry for single photosystems are shown to depend critically on the thermodynamic efficiency of the process. This principle is applied to the case of primary photochemistry of the isolated core of higher plant photosystem I and photosystem II, which are demonstrated to have maximal thermodynamic efficiencies of ξ > 0.98 and ξ > 0.92 respectively, and which, in principle, function with negative entropy production. It is demonstrated that for the case of ξ > (1 − T/Tr) entropy production is always negative and only becomes positive when ξ < (1 − T/Tr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号