首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蜘蛛丝是一种具有优良机械性能的天然动物蛋白纤维,它特有的结构和性能与其生物学功能密切相关。作者采用氨基酸自动分析仪、傅立叶转换红外光谱仪、扫描电镜和电子单纤强力仪对悦目金蛛(Argiope amoena)和棒络新妇(Nephila clavata)的卵袋丝进行了物理化学结构表征与力学性能的研究,结果表明两种蜘蛛卵袋均由微米级柱状腺丝、大壶状腺丝、亚微米级或纳米级葡萄状腺丝构成。卵袋丝的表面形貌特征、极性氨基酸含量、大侧链与小侧链氨基酸的比值、无定型区、β-折叠结构与结晶结构的含量等氨基酸组成种类与蛋白质二级结构特征,均满足各自生物学功能对断裂强度、延展性、初始模量等力学性能的要求。  相似文献   

2.
Spider dragline silk is formed as the result of a remarkable transformation in which an aqueous dope solution is rapidly converted into an insoluble protein filament with outstanding mechanical properties. Microscopy on the spinning duct in Nephila edulis spiders suggests that this transformation involves a stress-induced formation of anti-parallel beta-sheets induced by extensional flow. Measurements of draw stress at different draw rates during silking confirm that a stress-induced phase transition occurs.  相似文献   

3.
Production of spider silk proteins in tobacco and potato   总被引:32,自引:0,他引:32  
Spider dragline silk is a proteinaceous fiber with remarkable mechanical properties that make it attractive for technical applications. Unfortunately, the material cannot be obtained in large quantities from spiders. We have therefore generated transgenic tobacco and potato plants that express remarkable amounts of recombinant Nephila clavipes dragline proteins. Using a gene synthesis approach, the recombinant proteins exhibit homologies of >90% compared to their native models. Here, we demonstrate the accumulation of recombinant silk proteins, which are encoded by synthetic genes of 420-3,600 base pairs, up to a level of at least 2% of total soluble protein in the endoplasmic reticulum (ER) of tobacco and potato leaves and potato tubers, respectively. Using the present expression system, spider silk proteins up to 100 kDa could be detected in plant tissues. When produced in plants, the recombinant spidroins exhibit extreme heat stability-a property that is used to purify the spidroins by a simple and efficient procedure.  相似文献   

4.
Spider silk is a high-performance biomaterial with exceptional mechanical properties and over half a century of research into its mechanics, structure, and biology. Recent research demonstrates that it is a highly variable class of materials that differs across species and individuals in complex and interesting ways. Here, we review recent literature on mechanical variation and evolution in spider silk. We then present new data on material properties of silk from nine species of spiders in the Mesothelae and Mygalomorphae, the two basal clades of spiders. Silk from spiders in the Araneomorphae (true spiders where most previous research on silk has focused) is significantly stronger and therefore much tougher than the silk produced by spiders in the basal groups. These data support the hypothesis that the success and diversity seen in araneomorph spiders is associated with the evolution of this high-performance fiber. This comparative approach shows promise as a way to understand complex, high-performance biomaterials.  相似文献   

5.
Spider dragline silk is a remarkably strong fiber with impressive mechanical properties, which were thought to result from the specific structures of the underlying proteins and their molecular size. In this study, silk protein 11R26 from the dragline silk protein of Nephila clavipes was used to analyze the potential effects of the special amino acids on the function of 11R26. Three protein derivatives, ZF4, ZF5, and ZF6, were obtained by site-directed mutagenesis, based on the sequence of 11R26, and among these derivatives, serine was replaced with cysteine, isoleucine, and arginine, respectively. After these were expressed and purified, the mechanical performance of the fibers derived from the four proteins was tested. Both hardness and average elastic modulus of ZF4 fiber increased 2.2 times compared with those of 11R26. The number of disulfide bonds in ZF4 protein was 4.67 times that of 11R26, which implied that disulfide bonds outside the poly-Ala region affect the mechanical properties of spider silk more efficiently. The results indicated that the mechanical performances of spider silk proteins with small molecular size can be enhanced by modification of the amino acids residues. Our research not only has shown the feasibility of large-scale production of spider silk proteins but also provides valuable information for protein rational design.  相似文献   

6.
M Hudspeth  X Nie  W Chen  R Lewis 《Biomacromolecules》2012,13(8):2240-2246
Spider silks have been shown to have impressive mechanical properties. In order to assess the effect of extension rate, both quasi-static and high-rate tensile properties were determined for single fibers of major (MA) and minor (MI) ampullate single silk from the orb weaving spider Nephila clavipes . Low rate tests have been performed using a DMA Q800 at 10(-3) s(-1), while high rate analysis was done at 1700 s(-1) utilizing a miniature Kolsky bar apparatus. Rate effects exhibited by both respective silk types are addressed, and direct comparison of the tensile response between the two fibers is made. The fibers showed major increases in toughness at the high extension rate. Mechanical properties of these organic silks are contrasted to currently employed ballistic fibers and examination of fiber fracture mechanisms are probed via scanning electron microscope, revealing a globular rupture surface topography for both rate extremums.  相似文献   

7.
8.
Reconstruction of the bladder by means of both natural and synthetic materials remains a challenge due to severe adverse effects such as mechanical failure. Here we investigate the application of spider major ampullate gland-derived dragline silk from the Nephila edulis spider, a natural biomaterial with outstanding mechanical properties and a slow degradation rate, as a potential scaffold for bladder reconstruction by studying the cellular response of primary bladder cells to this biomaterial. We demonstrate that spider silk without any additional biological coating supports adhesion and growth of primary human urothelial cells (HUCs), which are multipotent bladder cells able to differentiate into the various epithelial layers of the bladder. HUCs cultured on spider silk did not show significant changes in the expression of various epithelial-to-mesenchymal transition and fibrosis associated genes, and demonstrated only slight reduction in the expression of adhesion and cellular differentiation genes. Furthermore, flow cytometric analysis showed that most of the silk-exposed HUCs maintain an undifferentiated immunophenotype. These results demonstrate that spider silk from the Nephila edulis spider supports adhesion, survival and growth of HUCs without significantly altering their cellular properties making this type of material a suitable candidate for being tested in pre-clinical models for bladder reconstruction.  相似文献   

9.
Guan J  Vollrath F  Porter D 《Biomacromolecules》2011,12(11):4030-4035
Supercontraction in dragline silk of Nephila edulis spider is shown to have two distinct components revealed by single fiber measurements using dynamic mechanical thermal analysis. The first component relies on a contraction of maximum 13% and seems to be associated with relaxation processed through the glass transition, T(g), as is induced by increasing temperature and/or humidity. The second component is induced by liquid water to the total contraction of 30%. The T(g)-induced contraction is linearly correlated with the restraining stress on the fiber, and the mechanical properties of the partially contracted silk have mechanical profiles that differ from both native and fully supercontracted fibers. Here we present novel supercontraction data and discuss their structural origins, examining the relaxation of stretched orientation in the different primary structure sequences.  相似文献   

10.
Albeit silks are fairly well understood on a molecular level, their hierarchical organisation and the full complexity of constituents in the spun fibre remain poorly defined. Here we link morphological defined structural elements in dragline silk of Nephila clavipes to their biochemical composition and physicochemical properties. Five layers of different make-ups could be distinguished. Of these only the two core layers contained the known silk proteins, but all can vitally contribute to the mechanical performance or properties of the silk fibre. Understanding the composite nature of silk and its supra-molecular organisation will open avenues in the production of high performance fibres based on artificially spun silk material.  相似文献   

11.
Huang W  Lin Z  Sin YM  Li D  Gong Z  Yang D 《Biochimie》2006,88(7):849-858
Spider silks are renowned for their excellent mechanical properties. Although several spider fibroin genes, mainly from dragline and capture silks, have been identified, there are still many members in the spider fibroin gene family remain uncharacterized. In this study, a novel silk cDNA clone from the golden web spider Nephila antipodiana was isolated. It is serine rich and contains two almost identical fragments with one varied gap region and one conserved spider fibroin-like C-terminal domain. Both in situ hybridization and immunoblot analyses have shown that it is specifically expressed in the tubuliform gland. Thus, it likely encodes the silk fibroin from the tubuliform gland, which supplies the main component of the inner egg case. Unlike other silk proteins, the protein encoded by the novel cDNA in water solution exhibits the characteristic of an alpha-helical protein, which implies the distinct property of the egg case silk, though the fiber of tubuliform silk is mainly composed of beta-sheet structure. Its sequence information facilitates elucidation of the evolutionary history of the araneoid fibroin genes.  相似文献   

12.
Spider silk genes are composed mostly of repetitive sequence that is flanked by non-repetitive terminal regions. Inferences about the evolutionary processes that influenced silk genes have largely been made from analyses using distantly related taxa and ancient silk gene duplicates. These studies have relied on comparisons across the conserved non-repetitive terminal regions to determine orthologous and paralogous relationships, as well as the influence of selection on silk genes. While the repetitive region heavily influences silk fiber mechanical properties, few molecular evolutionary analyses have been conducted on this region due to difficulty in determining homology. Here, we sample internal repetitive and carboxy terminal regions from all extant species of the trapdoor spider genus, Aliatypus. Aliatypus spiders are highly dispersal limited and rely on their silk lined burrow for protection. We determine positional homology across species for the carboxy terminal regions and relative positional homology for the internal repetitive regions. Gene trees based on each of these regions are in good agreement with the Aliatypus species tree, which indicates we sampled single spidroin orthologs in each species. In addition, we find that purifying selection and concerted evolution have acted to conserve Aliatypus spidroin internal repetitive regions. In contrast, selection testing identifies evidence of sites that evolved under positive selection and amino acid replacements that result in radical physicochemical changes in the carboxy terminal region. These findings indicate that comparison of spidroin orthologs across a comprehensive sample of congenerics reveal molecular evolutionary patterns obscured from studies using higher-level sampling of silk encoding genes.  相似文献   

13.
RGD-functionalized bioengineered spider dragline silk biomaterial   总被引:3,自引:0,他引:3  
Spider silk fibers have remarkable mechanical properties that suggest the component proteins could be useful biopolymers for fabricating biomaterial scaffolds for tissue formation. Two bioengineered protein variants from the consensus sequence of the major component of dragline silk from Nephila clavipes were cloned and expressed to include RGD cell-binding domains. The engineered silks were characterized by CD and FTIR and showed structural transitions from random coil to insoluble beta-sheet upon treatment with methanol. The recombinant proteins were processed into films and fibers and successfully used as biomaterial matrixes to culture human bone marrow stromal cells induced to differentiate into bone-like tissue upon addition of osteogenic stimulants. The recombinant spider silk and the recombinant spider silk with RGD encoded into the protein both supported enhanced the differentiation of human bone marrow derived mesenchymal stem cells (hMSCs) to osteogenic outcomes when compared to tissue culture plastic. The recombinant spider silk protein without the RGD displayed enhanced bone related outcomes, measured by calcium deposition, when compared to the same protein with RGD. Based on comparisons to our prior studies with silkworm silks and RGD modifications, the current results illustrate the potential to bioengineer spider silk proteins into new biomaterial matrixes, while also highlighting the importance of subtle differences in silk sources and modes of presentation of RGD to cells in terms of tissue-specific outcomes.  相似文献   

14.
蜘蛛牵引丝蛋白cDNA的扩增、克隆与序列分析   总被引:4,自引:0,他引:4  
蜘蛛是一种能在同一生物体内产生具有不同功能的多种丝的生物。蜘蛛丝的本质是蛋白质。牵引丝 (Draglinesilk)是由蜘蛛的主壶腹腺 (Majorampullate ,MA)产生的 ,其较高的抗张强度 (4× 10 9N m2 )与弹性 (35 % ) [1 ,2 ] ,使之成为一种有广阔应用前景的生物材料。目前 ,国外已有实验室通过构建cDNA文库的方法获得Nephilaclavipes中的两个牵引丝蛋白Spidroin1与Spidroin2的cDNA片段[3 ,4] ;但国内尚未见有相关报道。本文介绍的工作是利用简单便捷的PCR技术对牵引丝…  相似文献   

15.
Spider dragline silk is renowned as one of the toughest materials of its kind. In nature, spider silks are spun out of aqueous solutions under environmental conditions. This is in contrast to production of most synthetic fibres, where hazardous solvents, high temperatures and pressure are used. In order to identify some of the chemical processes involved in spider silk spinning, we have produced a collection of cDNA sequences from specific regions of Nephila senegalensis major ampullate gland. We examined in detail the sequence and expression of a putative Nephila senegalensis peroxidase gene (NsPox) from our EST collection. NsPox encodes a protein with similarity to Drosophila melanogaster and Aedes aegypti peroxidases. Northern analysis and in situ localisation experiments revealed that NsPox is expressed in major and minor ampullate glands of the spider where the main components of the dragline silk are produced. We suggest that NsPox plays a role in dragline silk fibre formation and/or processing.  相似文献   

16.

Background

In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent.

Methodology/Principal Findings

Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross- sections were stained in Haematoxylin & Eosin (H&E) for microscopic analyses.

Conclusion/Significance

Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration.  相似文献   

17.
Solid-state NMR techniques were used to study two different types of spider silk from two Australian orb-web spider species, Nephila edulis and Argiope keyserlingi. A comparison of (13)C-T(1) and (1)H-T(1rho) solid-state NMR relaxation data of the Ala Calpha, Ala Cbeta, Gly Calpha, and carbonyl resonances revealed subtle differences between dragline and cocoon silk. (13)C-T(1rho) and (1)H-T(1) relaxation experiments showed significant differences between silks of the two species with possible structural variations. Comparison of our data to previous (13)C-T(1) relaxation studies of silk from Nephila clavipes (A. Simmons et al., Macromolecules, 1994, Vol. 27, pp. 5235-5237) also supports the finding that differences in molecular mobility of dragline silk exist between species. Interspecies differences in silk structure may be due to different functional properties. Relaxation studies performed on wet (supercontracted) and dry silks showed that the degree of hydration affects relaxation properties, and hence changes in molecular mobility are correlated with functional properties of silk.  相似文献   

18.
We studied the mechanical properties of dragline threads of the edible golden silk spider Nephila edulis that are produced under spinning speeds ranging from 0.1 to 400 mm s(-1) and temperatures ranging from 5 to 40 degrees C. These conditions affected the silk in all of the mechanical traits we tested (strain at breaking, breaking energy, initial Young's modulus and point of yielding). We argue that both trade-offs (between mechanical properties) and constraints (in the manufacturing process) have a large role in defining spider silk fibres.  相似文献   

19.
Various spider species produce dragline silks with different mechanical properties. The primary structure of silk proteins is thought to contribute to the elasticity and strength of the fibres. Previously published work has demonstrated that the dragline silk of Euprosthenops sp. is stiffer then comparable silk of Nephila edulis, Araneus diadematus and Latrodectus mactans. Our studies of Euprosthenops dragline silk at the molecular level have revealed that nursery web spider fibroin has the highest polyalanine content among previously characterised silks and this is likely to contribute to the superior qualities of pisaurid dragline.  相似文献   

20.
Spider webs are made of silk, the properties of which ensure remarkable efficiency at capturing prey. However, remaining on, or near, the web exposes the resident spiders to many potential predators, such as ants. Surprisingly, ants are rarely reported foraging on the webs of orb-weaving spiders, despite the formidable capacity of ants to subdue prey and repel enemies, the diversity and abundance of orb-web spiders, and the nutritional value of the web and resident spider. We explain this paradox by reporting a novel property of the silk produced by the orb-web spider Nephila antipodiana (Walckenaer). These spiders deposit on the silk a pyrrolidine alkaloid (2-pyrrolidinone) that provides protection from ant invasion. Furthermore, the ontogenetic change in the production of 2-pyrrolidinone suggests that this compound represents an adaptive response to the threat of natural enemies, rather than a simple by-product of silk synthesis: while 2-pyrrolidinone occurs on the silk threads produced by adult and large juvenile spiders, it is absent on threads produced by small juvenile spiders, whose threads are sufficiently thin to be inaccessible to ants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号