首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knockdown resistance (kdr) in insects, caused by inherited nucleotide polymorphisms in the voltage-gated sodium channel (VGSC) gene, is a major threat to the efficacy of pyrethroid insecticides. Classic kdr, resulting from an L1014F substitution in the VGSC is now present in numerous pest species. Two other substitutions at the L1014 locus have also been reported, L1014S and L1014H. Here we have used expression of L1014 modified Drosophila para VGSCs in Xenopus oocytes with two-electrode voltage clamp to characterise all three mutations. The mutations L1014F and L1014H caused significant depolarizing shifts in the half activation voltage (V50,act) from −17.3 mV (wild-type) to −13.1 and −13.5 mV respectively, whereas L1014S caused no shift in V50,act but its currents decayed significantly faster than wild-type channels. Treatment of the wild-type channel with deltamethrin (≥1 nM), permethrin (≥30 nM) or DDT (≥1 ??M) resulted in hyperpolarizing shifts in V50,act. Deltamethrin, permethrin and DDT also produced “tail currents” with EC50s of 0.043, 0.40 and 65 ??M and maximum modifications of 837, 325 and 7% respectively. L1014F provided a high level of resistance against all insecticides for both measured parameters. L1014H most effectively combated deltamethrin induced tail currents while L1014S strongly resisted the large DDT induced shifts in V50,act. We conclude that L1014H and L1014S may have arisen through heavy exposure to specific pyrethroids and DDT respectively.  相似文献   

2.
Scorpion toxin Ctri9577, as a potent Kv1.3 channel blocker, is a new member of the α-KTx15 subfamily which are a group of blockers for Kv4.x potassium channels. However, the pharmacological function of Ctri9577 for Kv4.x channels remains unknown. Scorpion toxin Ctri9577 was found to effectively inhibit Kv4.3 channel currents with IC50 value of 1.34 ± 0.03 μM. Different from the mechanism of scorpion toxins as the blocker recognizing channel extracellular pore entryways, Ctri9577 was a novel gating modifier affecting voltage dependence of activation, steady-state inactivation, and the recovery process from the inactivation of Kv4.3 channel. However, Ctri9755, as a potent Kv1.3 channel blocker, was found not to affect voltage dependence of activation of Kv1.3 channel. Interestingly, pharmacological experiments indicated that 1 μM Ctri9755 showed less inhibition on Kv4.1 and Kv4.2 channel currents. Similar to the classical gating modifier of spider toxins, Ctri9577 was shown to interact with the linker between the transmembrane S3 and S4 helical domains through the mutagenesis experiments. To the best of our knowledge, Ctri9577 was the first gating modifier of potassium channels among scorpion toxin family, and the first scorpion toxin as both gating modifier and blocker for different potassium channels. These findings further highlighted the structural and functional diversity of scorpion toxins specific for the potassium channels.  相似文献   

3.
The KV7 (KCNQ) subfamily of voltage-gated K+ channels consists of five members (KV7.1- KV7.5) giving rise to non-inactivating, and slowly activating/deactivating currents mainly expressed in cardiac (KV7.1) and neuronal (KV7.2- KV7.5) tissue. In the present study, using the cut-open oocyte voltage clamp, we studied the relation of the ionic currents from homomeric neuronal Kv7 channels (KV7.2-KV7.5) with the gating currents recorded after K+ conductance blockade from the same channels. Increasing the recording temperature from 18{degree sign}C to 28{degree sign}C accelerated activation/deactivation kinetics of the ionic currents in all homomeric KV7 channels (activation Q10s at 0 mV were 3.8, 4.1, 8.3, and 2.8 for Kv7.2, Kv7.3, Kv7.4 and Kv7.5 channels, respectively), without large changes in currents voltage-dependence; moreover, at 28{degree sign}C, ionic currents carried by KV7.4 channels also showed a significant increase in their maximal value. Gating currents were only resolved in KV7.4 and KV7.5 channels; the size of the ON gating charges at +40 mV was 1.34 ± 0.34 nC for KV7.4, and 0.79 ± 0.20 nC for KV7.5. At 28{degree sign}C, KV7.4 gating currents had the following salient properties: 1) similar time integral of QON and QOFF, indicating no charge immobilization; 2) a left-shift in the V1/2 of the QON/V when compared to the G/V (≈ 50 mV in the presence of 2 mM extracellular Ba2+); 3) a QON decay faster than ionic current activation; and 4) a rising phase in the OFF gating charge after depolarizations larger than 0 mV. These observations suggest that, in KV7.4 channels, VSD movement is followed by a slow and/or low bearing charge step linking to pore opening, a result which may help to clarify the molecular consequence of disease-causing mutations and drugs affecting channel gating.  相似文献   

4.
The cytoplasmic C-terminus plays regulatory roles in the gating of many ion channels. However, lack of structural information on the C-terminus prevents the elucidation of how the C-terminal domain interacts with the gating machinery to exert its effects on the channel gating. In this report, we investigated the regulatory role of the C-terminus with functional study and structural modeling of a succession of C-terminal truncations of the Kv1.2 and Kv1.2427-KcsA112-160 chimeric channels. Functional study demonstrated a length-dependent shift of the activation curves for the C-terminal truncations of the Kv1.2 channel. Structural modeling indicated that the C-terminus of one subunit could dynamically interact with the S4–S5 linker of a neighboring subunit and the probability of interaction was dependent on the length of the C-terminal truncated Kv1.2 channels. In contrast, no length-dependent shift of the activation curve and probability of interaction between C-terminus and the neighboring S4–S5 linker were observed for the truncations of the Kv1.2-KcsA chimeric channel, suggesting that the native C-terminus of the Kv1.2 channel is essential for the interaction. Furthermore, surface plasmon resonance measurements indicated that there is direct interaction between the C-terminal domain and the S4–S5 linker of the Kv1.2 channel. These results imply that the dynamic interaction of the C-terminus with the S4–S5 linker from a neighboring subunit of the Kv1.2 channel provides a mechanism for its C-terminus to regulate the channel activation.  相似文献   

5.
Inhalational general anesthesia results from the poorly understood interactions of haloethers with multiple protein targets, which prominently includes ion channels in the nervous system. Previously, we reported that the commonly used inhaled anesthetic sevoflurane potentiates the activity of voltage-gated K+ (Kv) channels, specifically, several mammalian Kv1 channels and the Drosophila K-Shaw2 channel. Also, previous work suggested that the S4-S5 linker of K-Shaw2 plays a role in the inhibition of this Kv channel by n-alcohols and inhaled anesthetics. Here, we hypothesized that the S4-S5 linker is also a determinant of the potentiation of Kv1.2 and K-Shaw2 by sevoflurane. Following functional expression of these Kv channels in Xenopus oocytes, we found that converse mutations in Kv1.2 (G329T) and K-Shaw2 (T330G) dramatically enhance and inhibit the potentiation of the corresponding conductances by sevoflurane, respectively. Additionally, Kv1.2-G329T impairs voltage-dependent gating, which suggests that Kv1.2 modulation by sevoflurane is tied to gating in a state-dependent manner. Toward creating a minimal Kv1.2 structural model displaying the putative sevoflurane binding sites, we also found that the positive modulations of Kv1.2 and Kv1.2-G329T by sevoflurane and other general anesthetics are T1-independent. In contrast, the positive sevoflurane modulation of K-Shaw2 is T1-dependent. In silico docking and molecular dynamics-based free-energy calculations suggest that sevoflurane occupies distinct sites near the S4-S5 linker, the pore domain and around the external selectivity filter. We conclude that the positive allosteric modulation of the Kv channels by sevoflurane involves separable processes and multiple sites within regions intimately involved in channel gating.  相似文献   

6.
Pertussis toxin (FIX) inhibits the activation of the α-subunit of the inhibitory heterotrimeric G-proteins (Cαi/o) and modulates voltage-gated sodium channels, which may be one of the primary targets of pyrethroids. To investigate the potential mechanisms of agricultural pests resistance to pyrethroid insecticides, we examined the modulations by PTX on sodium channels in the central neurons of the 3rd-4th instar larvae of cyhalothrin-resistant (Cy-R) and cyhaiothrin-susceptible (Cy-S) Helicoverpa armigera by the whole-cell patch-clamp technique. The isolated neurons were cultured for 12-16 h in an improved L15 insect culture medium with or without PTX (400 ng/mL). The results showed that both the Cy-R and Cy-S sodium channels exhibited fast kinetics and tetrodotoxin (TTX) sensitivity. The Cy-R sodium channels exhibited not only altered gating properties, including a 8.88-mV right shift in voltage-dependent activation (V0.5act) and a 6.54-mV right shift in voltage-dependent inactivation (V0.5inact), but also a reduced peak in sodium channel density (Ⅰdensity) (55.2% of that in Cy-S neurons). Cy-R sodium channels also showed low excitability, as evidenced by right shift of activation potential (Ⅴacti) by 5-10 mV and peak potential (Ⅴpcak) by 20 mV. FIX exerted significant effects on Cy-S sodium channels, reducing sodium channel density by 70.04%, right shifting V0.5act by 14.41 mV and V0.5inact by 9. 38 mV. It did not cause any significant changes of the parameters mentioned above in the Cy-R sodium channels. The activation time (Tpeak) from latency to peak at peak voltage and the fast inactivation time constant (τinact) in both Cy-S and Cy-R neurons were not affected. The results suggest that cotton bollworm resistant to pyrethroid insecticides involves not only mutations and allosteric alterations of voltage-gated sodium channels, but also might implicate perturbation of PTX-sensitive Gαi/o-COupled signaling Wansduction pathways.  相似文献   

7.
Among the three extracellular domains of the tetrameric voltage-gated K+ (Kv) channels consisting of six membrane-spanning helical segments named S1–S6, the functional role of the S1-S2 linker still remains unclear because of the lack of a peptide ligand. In this study, the Kv1.3 channel S1-S2 linker was reported as a novel receptor site for human β-defensin 2 (hBD2). hBD2 shifts the conductance-voltage relationship curve of the human Kv1.3 channel in a positive direction by nearly 10.5 mV and increases the activation time constant for the channel. Unlike classical gating modifiers of toxin peptides from animal venoms, which generally bind to the Kv channel S3-S4 linker, hBD2 only targets residues in both the N and C termini of the S1-S2 linker to influence channel gating and inhibit channel currents. The increment and decrement of the basic residue number in a positively charged S4 sensor of Kv1.3 channel yields conductance-voltage relationship curves in the positive direction by ∼31.2 mV and 2–4 mV, which suggests that positively charged hBD2 is anchored in the channel S1-S2 linker and is modulating channel activation through electrostatic repulsion with an adjacent S4 helix. Together, these findings reveal a novel peptide ligand that binds with the Kv channel S1-S2 linker to modulate channel activation. These findings also highlight the functional importance of the Kv channel S1-S2 linker in ligand recognition and modification of channel activation.  相似文献   

8.
Phoneutria nigriventer toxin Tx1 (PnTx1, also referred to in the literature as Tx1) exerts inhibitory effect on neuronal (NaV1.2) sodium channels in a way dependent on the holding potential, and competes with μ-conotoxins but not with tetrodotoxin for their binding sites. In the present study we investigated the electrophysiological properties of the recombinant toxin (rPnTx1), which has the complete amino acid sequence of the natural toxin with 3 additional residues: AM on the N-terminal and G on the C-terminal. At the concentration of 1.5 μM, the recombinant toxin inhibits Na+ currents of dorsal root ganglia neurons (38.4 ± 6.1% inhibition at −80 mV holding potential) and tetrodotoxin-resistant Na+ currents (26.2 ± 4.9% at the same holding potential). At −50 mV holding potential the inhibition of the total current reached 71.3 ± 2.3% with 1.5 μM rPnTx1. The selectivity of rPnTx1 was investigated on ten different isoforms of voltage-gated sodium channels expressed in Xenopus oocytes. The order of potency for rPnTx1 was: rNaV1.2 > rNaV1.7 ≈ rNaV1.4 ≥ rNaV1.3 > mNaV1.6 ≥ hNaV1.8. No effect was seen on hNaV1.5 and on the arthropods isoforms (DmNaV1, BGNaV1.1a and VdNaV1). The IC50 for NaV1.2 was 33.7 ± 2.9 nM with a maximum inhibition of 83.3 ± 1.9%. The toxin did not alter the voltage-dependence of channel gating and was effective on NaV1.2 channels devoid of inactivation. It was ineffective on neuronal calcium channels. We conclude that rPnTx1 has a promising selectivity, and that it may be a valuable model to achieve pharmacological activities of interest for the treatment of channelopathies and neuropathic pain.  相似文献   

9.
Bacteriophage T2L undergoes a reversible conversion between two conformations having S20. w values of about 1000 s and 700 s. These are known, respectively, as the “fast” and “slow” sedimenting forms. Preparations of both forms of the bacteriophage were fixed with formaldehyde, negatively stained with uranyl acetate, and observed in the electron microscope. The tail fibers of the fast form generally extended upward, in proximity to the tail and terminating on the head. The tail fibers of the slow form extended outward, away from the tail.  相似文献   

10.
R13X derivatives of μ-conotoxin GIIIA bind externally to single sodium channels and block current incompletely with mean “blocked” durations of several seconds. We studied interactions between two classes of blockers (μ-conotoxins and amines) by steady state, kinetic analysis of block of BTX-modified Na channels in planar bilayers. The amines cause all-or-none block at a site internal to the selectivity filter. TPrA and DEA block single Na channels with very different kinetics. TPrA induces discrete, all-or-none, blocked events (mean blocked durations, ∼100 ms), whereas DEA produces a concentration-dependent reduction of the apparent single channel amplitude (“fast” block). These distinct modes of action allow simultaneous evaluation of block by TPrA and DEA, showing a classical, competitive interaction between them. The apparent affinity of TPrA decreases with increasing [DEA], based on a decrease in the association rate for TPrA. When an R13X μ-conotoxin derivative and one of the amines are applied simultaneously on opposite sides of the membrane, a mutually inhibitory interaction is observed. Dissociation constants, at +50 mV, for TPrA (∼4 mM) and DEA (∼30 mM) increase by ∼20%-50% when R13E (nominal net charge, +4) or R13Q (+5) is bound. Analysis of the slow blocking kinetics for the two toxin derivatives showed comparable decreases in affinity of the μ-conotoxins in the presence of an amine. Although this mutual inhibition seems to be qualitatively consistent with an electrostatic interaction across the selectivity filter, quantitative considerations raise questions about the mechanistic details of the interaction.  相似文献   

11.
It has been suggested that voltage-dependent G protein modulation of CaV2.2 channels is carried out at closed states of the channel. Our purpose was to estimate the number of gating charges of CaV2.2 channel in control and G protein-modulated conditions. By using a Cole-Moore protocol we observed a significant delay in CaV2.2 channel activation according to a transit of the channel through a series of closed states before channel opening. If G protein voltage-dependent modulation were carried out at these closed states, then we would have expected a greater Cole-Moore lag in the presence of a neurotransmitter. This prediction was confirmed for noradrenaline, while no change was observed in the presence of angiotensin II, a voltage-insensitive G protein modulator. We used the limiting slope method for calculation of the gating charge per channel. Effective charge z was 6.32 ± 0.65 for CaV2.2 channels in unregulated conditions, while GTPγS reduced elementary charge by ∼4 e0. Accordingly, increased concentration of noradrenaline induced a gradual decrease on z, indicating that this decrement was due to a G protein voltage-sensitive modulation. This paper shows for the first time a significant and reversible decrease in charge transfer of CaV2.2 channels under G protein modulation, which might depend on the activated G protein inhibitory pathway.  相似文献   

12.
Using the standard voltage-clamp technique in the whole-cell mode, we studied the characteristics of barium currents (I Ba; Ba2+ concentration in the external solution was 5 mM) carried through L-type Ca2+ channels in the membrane of myocytes of the resistive mesenteric artery from normotensive and genetically hypertensive rats (NR and GHR, respectively). To perforate the membrane, we used amphotericin B. The arbitrary density of I Ba through the plasma membrane of GHR myocytes significantly exceeded this parameter in the NR group. For both animal groups, activation curves plotted as the dependence of the membrane conductance (G Ba) on the membrane potential were not significantly different: the membrane potential for half activation (V 0.5) of I Ba in the NR myocytes was equal to 1.0 ± 0.3 mV with slope factor k = 6.3 ± 0.4 mV, whereas in the GHR myocytes V 0.5 = -1.6 ± 0.2 mV and k = 6.2 ± 0.5 mV. The stationary inactivation curves for I Ba differed significantly: in the NR myocytes, V 0.5 = -24.2 ± 0.4 mV and k = 8.3 ± 0.2 mV, whereas in the GHR myocytes such parameters were, respectively, -21.4 ± 0.4 and 8.7 ± 0.3 mV. The pattern of intersection of stationary activation and stationary inactivation curves for I Ba was indicative of the existence of a window current, i.e., the non-inactivating component of I Ba within the -40 to ±20 mV range; the phenomenon was clearly pronounced in the GHR myocytes. Differences in the arbitrary density of integral I Ba and window current were observed. These differences can cause an increased tone of the blood vessels in hypertensive animals.  相似文献   

13.
Extracellular S3-S4 linkers of domain IV (IVS3-S4) of L-type Ca2+ channels (CaV1) are subject to alternative splicing, resulting into distinct gating profiles serving for diverse physiological roles. However, it has remained elusive what would be the determining factor of IVS3-S4 effects on CaV1 channels. In this study, we systematically compared IVS3-S4 variants from CaV1.1-1.4, and discover that the flexibility of the linker plays a prominent role in gating characteristics. Chimeric analysis and mutagenesis demonstrated that changes in half activation voltage (V1/2) or activation time constant (τ) are positively correlated with the numbers of flexible glycine residues within the linker. Moreover, antibodies that reduce IVS3-S4 flexibility negatively shifted V1/2, emerging as a new category of CaV1 enhancers. In summary, our results suggest that the flexibility or rigidity of IVS3-S4 linker underlies its modulations on CaV1 activation (V1/2 and τ), paving the way to dissect the core mechanisms and to develop innovative perturbations pertaining to voltage-sensing S4 and its vicinities.  相似文献   

14.
Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail “neck”, are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the “outer ion” site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily.  相似文献   

15.
N-type and L-type channels have significant gating differences, and we wondered whether some of these differences are linked to the relationship between charge movement and channel opening. The time constants for N-channel closing (τDeact) and Off-gating charge movement (τQOff) were compared over a range of voltages. τQOff was significantly larger than τDeact at voltages < −10 mV, and the voltage dependence of the τQOff was less steep than that for τDeact, which suggests that gating charge relaxation does not limit channel closing. Roscovitine, a drug that slows N-channel closing by holding the channel in a high open-probability state, was found to slow both τQOff and τDeact, and thus the time courses of channel closing and gating charge relaxation were similar. Our gating current results were reproduced with the addition of a voltage-independent, closed-closed transition to our previously published two-open-state N-channel model. This work suggests that, like L-type channels, there is a voltage-independent transition along the N-channel activation/deactivation pathway, but this transition occurs between closed states instead of the closed-open states of the L-channel. Also unlike L-type channels, the gating charge appears to be locked into the activated position by the N-channel open state.  相似文献   

16.
We investigated the effect of the calmodulin inhibitor and antipsychotic drug trifluoperazine on voltage-dependent K+ (Kv) channels. Kv currents were recorded by whole-cell configuration of patch clamp in freshly isolated rabbit coronary arterial smooth muscle cells. The amplitudes of Kv currents were reduced by trifluoperazine in a concentration-dependent manner, with an apparent IC50 value of 1.58 ± 0.48 μM. The rate constants of association and dissociation by trifluoperazine were 3.73 ± 0.33 μM−1 s−1 and 5.84 ± 1.41 s−1, respectively. Application of trifluoperazine caused a positive shift in the activation curve but had no significant effect on the inactivation curve. Furthermore, trifluoperazine provoked use-dependent inhibition of the Kv current under train pulses (1 or 2 Hz). These findings suggest that trifluoperazine interacts with Kv current in a closed state and inhibits Kv current in the open state in a time- and use-dependent manner, regardless of its function as a calmodulin inhibitor and antipsychotic drug.  相似文献   

17.
The modular architecture of voltage-gated K+ (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates KvSynth1, a functional voltage-gated, outwardly rectifying K+ channel. KvSynth1 displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V1/2 = +56 mV; z of ∼1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains.  相似文献   

18.
Slow inactivated states in voltage-gated ion channels can be modulated by binding molecules both to the outside and to the inside of the pore. Thus, external K+ inhibits C-type inactivation in Shaker K+ channels by a “foot-in-the-door” mechanism. Here, we explore the modulation of a very long-lived inactivated state, ultraslow inactivation (IUS), by ligand binding to the outer vestibule in voltage-gated Na+ channels. Blocking the outer vestibule by a mutant μ-conotoxin GIIIA substantially accelerated recovery from IUS. A similar effect was observed if Cd2+ was bound to a cysteine engineered to the selectivity filter (K1237C). In K1237C channels, exposed to 30 μM Cd2+, the time constant of recovery from IUS was decreased from 145.0 ± 10.2 s to 32.5 ± 3.3 s (P < 0.001). Recovery from IUS was only accelerated if Cd2+ was added to the bath solution during recovery (V = −120 mV) from IUS, but not when the channels were selectively exposed to Cd2+ during the development of IUS (−20 mV). These data could be explained by a kinetic model in which Cd2+ binds with high affinity to a slow inactivated state (IS), which is transiently occupied during recovery from IUS. A total of 50 μM Cd2+ produced an ∼8 mV hyperpolarizing shift of the steady-state inactivation curve of IS, supporting this kinetic model. Binding of lidocaine to the internal vestibule significantly reduced the number of channels entering IUS, suggesting that IUS is associated with a conformational change of the internal vestibule of the channel. We propose a molecular model in which slow inactivation (IS) occurs by a closure of the outer vestibule, whereas IUS arises from a constriction of the internal vestibule produced by a widening of the selectivity filter region. Binding of Cd2+ to C1237 promotes the closure of the selectivity filter region, thereby hastening recovery from IUS. Thus, Cd2+ ions may act like a foot-on-the-door, kicking the IS gate to close.  相似文献   

19.
Previous studies have shown that 17β-estradiol has a pivotal function by blocking voltage-gated K+ (Kv) channels in several different types of cells such as cardiac myocytes and neurons. Outward Kv currents can also be measured in osteoblasts, although little is known about the effects of 17β-estradiol on these currents. In human osteoblast-like MG63 cells, we found that 17β-estradiol inhibits peak and end Kv currents, with IC50 values of 480 and 325 nM, respectively. To elucidate the mechanism of inhibition, the kinetics of Kv currents were investigated. The half-maximum activation potential (V 1/2) was 1.3 mV and was shifted left to ?4.4 mV after application of 500 nM 17β-estradiol. For steady-state inactivation, the V 1/2 was –55.0 mV and weakly shifted left to –58.2 mV. To identify the molecular basis of outward Kv currents in MG63 cells, we performed RT-PCR analyses. The expression of Kv2.1 channels appeared to dominate over that of other Kv channels in MG63 cells. In COS-7 cells with heterologously expressed Kv2.1 channels, 17β-estradiol also inhibits macroscopic currents of Kv2.1. Our data indicate that 17β-estradiol inhibits Kv currents in human osteoblast-like MG63 cells and that Kv2.1 is a potential molecular correlate of outward Kv currents in these cells.  相似文献   

20.
It is well documented that nifedipine, a commonly used dihydropyridine Ca2+ channel blocker, has also significant interactions with voltage-gated K+ (Kv) channels. But to date, little is known whether nifedipine exerted an action on Kv2.1 channels, a member of the Shab subfamily with slow inactivation. In the present study, we explored the effects of nifedipine on rat Kv2.1 channels expressed in HEK293 cells. Data from whole-cell recording showed that nifedipine substantially reduced Kv2.1 currents with the IC50 value of 37.5 ± 5.7 μM and delayed the time course of activation without effects on the activation curve. Moreover, this drug also significantly shortened the duration of inactivation and deactivation of Kv2.1 currents in a voltage-dependent manner. Interestingly, the half-maximum inactivation potential (V 1/2) of Kv2.1 currents was -11.4 ± 0.9 mV in control and became -38.5 ± 0.4 mV after application of 50 μM nifedipine. The large hyperpolarizing shift (27 mV) of the inactivation curve has not been reported previously and may result in more inactivation for outward delayed rectifier K+ currents mediated by Kv2.1 channels at repolarization phases. The Y380R mutant significantly increased the binding affinity of nifedipine to Kv2.1 channels, suggesting an interaction of nifedipine with the outer mouth region of this channel. The data present here will be helpful to understand the diverse effects exerted by nifedipine on various Kv channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号