首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A glutathione transferase (PfGST) isolated from Plasmodium falciparum has been associated with chloroquine resistance. A range of natural products including malagashanine (MG) were screened for inhibition of PfGST by a GST assay with 1-chloro-2,4-dinitrobenzene as a substrate. Only the sesquiterpene (JBC 42C), the bicoumarin (Tral-1), ellagic acid and curcumin, were shown to be potent inhibitors of PfGST with IC50 values of 8.5, 12, 50 and 69 μM, respectively. Kinetic studies were performed on PfGST using ellagic acid as an inhibitor. Uncompetitive and mixed types of inhibition were obtained for glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene (CDNB). The Ki for GSH and CDNB were ?0.015?μM and 0.011?μM, respectively. Malagashanine (100?µM) only reduced the activity of PfGST to 80% but showed a time-dependent inactivation of PfGST with a t1/2 of 34 minutes compared to >120 minutes in the absence of MG or in the presence of 5?mM GSH. This work facilitates the understanding of the interaction of PfGST with some plant derived compounds.  相似文献   

2.
The postnatal development in male Sprague-Dawley rats of hepatic glutathione S-transferase B (ligandin) in relation to the other glutathione S-transferases is described. The concentration of glutathione S-transferase B in 1-day-old male rats is about one-fifth of that in adult animals. The enzyme reaches adult concentrations 4-5 weeks later. When assessed by substrate specificity or immunologically, the proportion of transferase B relative to the other glutathione S-transferases is high during the first week after birth. At this age, 67.5% of the transferase activity towards 1-chloro-2,4-dinitrobenzene is immunoprecipitable by anti-(transferase B), compared with about 50% in adults and older pups. Between the second and the fifth postnatal week, the fraction of transferase B increases in parallel fashion with the other transferases in hepatic cytosol. Neither L-thyroxine nor cortisol induce a precocious increase in glutathione S-transferase activity. Phenobarbital did induce transferase activity towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene in both pups and adults. The extent of induction by phenobarbital was a function of basal activity during development such that the percentage stimulation remained constant from 5 days postnatally to adulthood.  相似文献   

3.
A wide distribution of glutathione S-transferase activity towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-dinitrobenzene has been detected in a range of non-transformed, transformed and hybrid cell lines. The levels of transferase activity are lower in these in vitro cell lines than are corresponding in vivo levels. A majority of the cell lines tested contain proteins that are antigenically related to rat liver glutathione S-transferase B (ligandin).  相似文献   

4.
The ability of cattle and deer liver to catalyse xenobiotic conjugation reactions was investigated and compared with that of the rat. Marked differences in the activity of these enzymes were noted between the domestic animals and rats. Hepatic microsomal epoxide hydrolase activity in cattle and deer, determined using benzo[a]pyrene 4,5-oxide as substrate, was nearly twice that of the rat. In contrast, glutathione S-transferase activity in hepatic cytosol, determined with 1-chloro-2,4-dinitrobenzene as substrate, was significantly lower in the cattle and deer. When 1,2-dichloro-4-nitrobenzene served as the accepting substrate, no activity was detectable in the cattle and deer. Similarly, glutathione reductase activity and total glutathione levels were markedly lower in the cattle and deer compared with the rat. Cytosolic sulfotransferase activity, monitored using 2-naphthol as substrate, was higher in cattle compared with the rat. Finally, microsomal UDP-glucuronosyl transferase activity, determined using 1-napththol as substrate, did not differ significantly among the three species.  相似文献   

5.
Trout kidney contains 2.3 mmol GSH/kg. The cytosolic glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene as substrate is 0.35 mumol/min/mg protein. There is no detectable activity with 1,2-epoxy-3-(p-nitrophenoxy)propane, ethacrynic acid, p-nitrobenzyl chloride or p-nitrophenyl acetate. A variable proportion of the activity does not bind to a glutathione-affinity matrix. Its Km values for GSH and 1-chloro-2,4-dinitrobenzene are 3.0 and 5.1 mM, respectively. The rest of the activity is eluted from the affinity matrix as one main and two minor peaks. The main peak has Km values for GSH and 1-chloro-2,4-dinitrobenzene of 0.4 and 4.5 mM, respectively. Its subunit Mr is 22,900. The activity in the main peak is inhibited progressively by 1-chloro-2,4-dinitrobenzene with a rate constant of 0.11/min.  相似文献   

6.
Hepatic glutathione S-transferase activities were determined with the substrates 1,2-dichloro-4-nitrobenzene and 1-chloro-2,4-dinitrobenzene. Sexual differentiation of glutathione S-transferase activities is not evident during the prepubertal period, but glutathione conjugation with 1,2-dichloro-4-nitrobenzene is 2–3-fold greater in adult males than in females. Glutathione conjugation with 1-chloro-2,4-dinitrobenzene is slightly higher in adult males than adult females. No change in activity was observed after postpubertal gonadectomy of males or females. Neonatal castration of males results in a significant decrease in glutathione conjugation with 1,2-dichloro-4-nitrobenzene. Hypophysectomy, or hypophysectomy followed by gonadectomy did result in significantly higher glutathione S-transferase activities in both sexes. These increases can be reversed by implanting an adult male or female pituitary or four prepubertal pituitaries under the kidney capsule. Postpubertal sexual differentiation of glutathione S-transferase activities is neither dependent on pituitary sexual differentiation nor pituitary maturation. Prolactin concentrations are inversely related to glutathione S-transferase activities in hypophysectomized rats with or without ectopic pituitaries. Somatotropin exogenously administered to hypophysectomized rats results in decreased glutathione S-transferase activities, whereas prolactin has no effect. Adult male rats treated neonatally with monosodium l-glutamate to induce arcuate nucleus lesions of the hypothalamus have decreased glutathione S-transferase activities towards 1,2-dichloro-4-nitrobenzene and decreased somatotropin concentrations. Our experiments suggests that sexual differentiation of hepatic glutathione S-transferase is a result of a hypothalamic inhibiting factor in the male (absent in the female). This postpubertally expressed inhibiting factor acts on the pituitary to prevent secretion of a pituitary inhibiting factor (autonomously secreted by the female), resulting in higher glutathione S-transferase activities in the adult male than the adult female.  相似文献   

7.
8.
Using a rat liver cytosol source of enzyme trialkyl phosphorothioates have been shown to be substrates of glutathione S-transferases. Using OSS-trimethyl phosphorodithioate (OSS-Me(O] and OOS-trimethyl phosphorothioate (OOS-Me(O] the methyl transferred to the sulphydryl of glutathione is that attached to phosphorus via an oxygen atom. Fractionation of liver cytosol has shown that although the bulk activity is due to the three isozymes (1-1; 3-4; 1.2), OSS-Me(O) is a general substrate for glutathione S-transferases. The specific activity is low compared with the substrates 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene.  相似文献   

9.
The glutathione S-transferases that were purified to homogeneity from liver cytosol have overlapping but distinct substrate specificities and different isoelectric points. This report explores the possibility of using preparative electrofocusing to compare the composition of the transferases in liver and kidney cytosol. Hepatic cytosol from adult male Sprague–Dawley rats was resolved by isoelectric focusing on Sephadex columns into five peaks of transferase activity, each with characteristic substrate specificity. The first four peaks of transferase activity (in order of decreasing basicity) are identified as transferases AA, B, A and C respectively, on the basis of substrate specificity, but the fifth peak (pI6.6) does not correspond to a previously described transferase. Isoelectric focusing of renal cytosol resolves only three major peaks of transferase activity, each with narrow substrate specificity. In the kidney, peak 1 (pI9.0) has most of the activity toward 1-chloro-2,4-dinitrobenzene, peak 2 (pI8.5) toward p-nitrobenzyl chloride, and peak 3 (pI7.0) toward trans-4-phenylbut-3-en-2-one. Renal transferase peak 1 (pI9.0) appears to correspond to transferase B on the basis of pI, substrate specificity and antigenicity. Kidney transferase peaks 2 (pI8.5) and 3 (pI7.0) do not correspond to previously described glutathione S-transferases, although kidney transferase peak 3 is similar to the transferase peak 5 from focused hepatic cytosol. Transferases A and C were not found in kidney cytosol, and transferase AA was detected in only one out of six replicates. Thus it is important to recognize the contribution of individual transferases to total transferase activity in that each transferase may be regulated independently.  相似文献   

10.
Pyloric caeca of trout contain 1.9 mmol GSH/kg tissue. Cytosolic glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene as substrate is 0.06 mmol/min/g protein. Cholate (3.3 mM) inhibits cytosolic transferase activity by 55% at pH 6.6 and by 4% at pH 7.4. The transferases do not bind 8-anilino-1-naphthalene sulphonate at pH 7.4. The cytosolic transferases are inactivated progressively by 1-chloro-2,4-dinitrobenzene, 50% of their activity being lost in 5.0 min. A minority of the activity does not bind to a glutathione-affinity matrix. At pH 6.6 its apparent Michaelis constants for GSH and 1-chloro-2,4-dinitrobenzene are 0.88 and 9.1 mM respectively. The rest of the activity is eluted from the affinity matrix as a single peak. Its apparent Michaelis constants for GSH and 1-chloro-2,4-dinitrobenzene are 0.33 and 2.9 mM respectively. Its subunit Mr is 22.4 kDa.  相似文献   

11.
Rat glutathione transferase 8-8 is one of the less abundant cytosolic glutathione transferases, accounting for approx. 1% of the total activity with 1-chloro-2,4-dinitrobenzene in liver. The enzyme is eluted at pH 6.3 upon chromatofocusing and has so far been identified in liver, kidney, lung and testis. Characteristic properties include high relative activity with ethacrynic acid (70% of the specific activity with 1-chloro-2,4-dinitrobenzene) and an apparent subunit Mr of 24 500. The most significant property noted is the high catalytic activity in the conjugation of 4-hydroxyalk-2-enals, major products of lipid peroxidation. The catalytic efficiency with these substrates exceeds corresponding values for all known substrates tested with any glutathione transferase, which suggests that transferase 8-8 may have evolved to detoxify 4-hydroxyalk-2-enals.  相似文献   

12.
Glutathione-S-transferase (GST) was isolated from the northern hardshell clam Mercinaria mercinaria (quahog) using a two-step procedure involving ammonium sulfate precipitation and affinity chromatography. Kinetic analysis of the purified enzyme using 1-chloro-2,4-dinitrobenzene as substrate revealed a specific activity of 38.0 μmol min−1 mg−1, while V max and K m values were estimated as 48.0 μmol min−1 mg−1 and 0.24 mM, respectively. Electrophoretic analysis of GST indicated multiple forms of the dimeric enzyme in quahogs with subunit molecular masses of 22, 24, 25, and 27 kDa. Isoelectric focusing analysis resulted in pI values for three isoenzymes of 5.1, 4.9, and 4.6. The acidic pI values obtained indicated that quahog GST belongs to the π class. Inhibition of quahog GST by tetrapyrroles was similar to that of GST from oyster and rat liver. Quantitative comparison of tetrapyrrole inhibition patterns of quahog GST with those of oyster and rat liver GST indicated lower inhibition rates by three of the four tetrapyrroles tested (bilirubin, biliverdin, and chlorophillyin), suggesting that quahog GST could differ structurally or functionally from oyster and rat liver GSTs. Received March 17, 1998; accepted August 18, 1998.  相似文献   

13.
We previously reported that a velvetleaf (Abutilon theophrasti Medic) biotype found in Maryland was resistant to atrazine because of an enhanced capacity to detoxify the herbicide via glutathione conjugation (JW Gronwald, Andersen RN, Yee C [1989] Pestic Biochem Physiol 34: 149-163). The biochemical basis for the enhanced atrazine conjugation capacity in this biotype was examined. Glutathione levels and glutathione S-transferase activity were determined in extracts from the atrazine-resistant biotype and an atrazine-susceptible or “wild-type” velvetleaf biotype. In both biotypes, the highest concentration of glutathione (approximately 500 nanomoles per gram fresh weight) was found in leaf tissue. However, no significant differences were found in glutathione levels in roots, stems, or leaves of either biotype. In both biotypes, the highest concentration of glutathione S-transferase activity measured with 1-chloro-2,4-dinitrobenzene or atrazine as substrate was in leaf tissue. Glutathione S-transferase measured with 1-chloro-2,4-dinitrobenzene as substrate was 40 and 25% greater in leaf and stem tissue, respectively, of the susceptible biotype compared to the resistant biotype. In contrast, glutathione S-transferase activity measured with atrazine as substrate was 4.4- and 3.6-fold greater in leaf and stem tissue, respectively, of the resistant biotype. Kinetic analyses of glutathione S-transferase activity in leaf extracts from the resistant and susceptible biotypes were performed with the substrates glutathione, 1-chloro-2,4-dinitrobenzene, and atrazine. There was little or no change in apparent Km values for glutathione, atrazine, or 1-chloro-2,4-dinitrobenzene. However, the Vmax for glutathione and atrazine were approximately 3-fold higher in the resistant biotype than in the susceptible biotype. In contrast, the Vmax for 1-chloro-2,4-dinitrobenzene was 30% lower in the resistant biotype. Leaf glutathione S-transferase isozymes that exhibit activity with atrazine and 1-chloro-2,4-dinitrobenzene were separated by fast protein liquid (anion-exchange) chromatography. The susceptible biotype had three peaks exhibiting activity with atrazine and the resistant biotype had two. The two peaks of glutathione S-transferase activity with atrazine from the resistant biotype coeluted with two of the peaks from the susceptible biotype, but peak height was three- to fourfold greater in the resistant biotype. In both biotypes, two of the peaks that exhibit glutathione S-transferase activity with atrazine also exhibited activity with 1-chloro-2,4-dinitrobenzene, with the peak height being greater in the susceptible biotype. The results indicate that atrazine resistance in the velvetleaf biotype from Maryland is due to enhanced glutathione S-transferase activity for atrazine in leaf and stem tissue which results in an enhanced capacity to detoxify the herbicide via glutathione conjugation.  相似文献   

14.
Four types of glutathione S-transferase were purified to homogeneity from guinea pig liver by DEAE-cellulose, Sephadex G-75, CM-cellulose, and affinity chromatography. These isozymes were named a, b, c, and d based on the reverse order of elution from a CM-cellulose column, and had specific activities of 89.6, 92.2, 99.0, and 44.0 units/mg, respectively, when assayed with 1 mM each of 1-chloro-2,4-dinitrobenzene and reduced glutathione. All four transferases of guinea pig liver were homodimers. The transferases b, c, and d had a similar molecular weight of 50,000 and their subunit sizes were 25,000, but the corresponding values for transferase a were 45,000 and 23,500, respectively. Transferase a was notably different in the activities towards organic hydroperoxides and 1,2-dichloro-4-nitrobenzene from the other isozymes. Transferases a and b, the major forms in guinea pig liver, were studied with respect to their biochemical properties, including kinetic parameters, absorption and fluorescence spectra, and bilirubin binding. Glutathione peroxidase activity of the transferase a was about 100 times higher than that of other isozymes. In guinea pig liver, it is estimated that transferase a is the major glutathione peroxidase, accounting for about 75% of the total organic hydroperoxide reduction.  相似文献   

15.
Glutathione S-transferase activity was determined in rat, rabbit, and guinea pig serum using styrene 7,8-oxide (SO) and benzo (a) pyrene 4,5-oxide (4,5-BPO) as substrates. Of the species tested, rat had the highest transferase activity (62.5 and 3.2 nmol/min/ml serum for SO and 4,5-BPO, respectively) and rabbit had the lowest activity. Glutathione S-transferase activity was 60% higher in serum from male rats than in female rats. In rats, serum enzyme specific activities (nmol/min/mg protein) were less than 1% of hepatic enzyme activities with SO, 4,5-BPO, 1,2-dichloro-4-nitrobenzene (DCNB), and 1-chloro-2,4-dinitrobenzene (DNCB). Glutathione S-transferase activity was also determined in rat serum during perinatal development. Serum from rats at 18 days of gestation or from 1- and 4-day-old animals had barely detectable transferase activity. Activity increased with age and reached a maximum in 140-day-old animals. The intraperitoneal administration of diethyl maleate (DEM) (0.8 ml/kg) or L-methionine-DL-sulfoximine (MS) (200 mg/kg) to male rats had no effect on serum or hepatic glutathione S-transferase activities 2 or 26 hr after dosing. Treatment with carbon tetrachloride (CCl4) (1 m1/kg) caused an 11-fold increase in serum transferase activity and a 40% decrease in liver specific activities 24 hr after administration.  相似文献   

16.
High glutathione S-transferase activity was found in the cytosol of F-cells from the hepatopancreas of the blue crab (Callinectes sapidus). Purification of glutathione S-transferase from hepatopancreas extracts by Sephadex G-200, DEAE-Sephacel, and chromatofocusing resulted in the isolation of two isozymes with isoelectric points of 5.9 and 5.7, as determined by analytical isoelectric focusing. Using 1-chloro-2,4-dinitrobenzene as the substrate the specific activities of the two purified isozymes were 222 and 182 mumol/min/mg, respectively. There was no evidence for basic transferase isozymes. In addition to 1-chloro-2,4-dinitrobenzene the purified glutathione S-transferase isozymes showed activity with p-nitrophenyl acetate, p-nitrobenzyl chloride, bromosulfophthalein, and benzopyrene oxide. Thus, both substitution and addition reactions associated with vertebrate glutathione S-transferase were found in the crab transferases. There was no when ethacrynic acid, methyl iodide, trans-4-phenyl-3-buten-2-one, 1,2-epoxy-(p-nitrophenoxy)propane, cumene hydroperoxide, and t-butyl hydroperoxide were used as substrates. The lack of peroxidase activity is of interest since this activity is commonly found in vertebrate transferase isozymes. The two transferases had a dimeric Mr of 40,800 with similar amino acid compositions and similar kinetic parameters (Vmax, Km, and pH maxima) with 1-chloro-2,4-dinitrobenzene as substrate. The two transferases could be distinguished by their isoelectric points, molecular mass of the monomers (22,300 for GST 1 and 22,300 and 22,400 for GST 2), and different inhibitor mechanisms with hematin and bromosulfophthalein.  相似文献   

17.
Female C57Bl/6J mice were given drinking water containing 0.05% propylthiouracil to induce a hypothyroid condition. Mitochondrial glycerol-3-phosphate dehydrogenase activity, used as an index of hypothyroidism, was 57.1 +/- 4.5 and 29.4 +/- 3.8 nmol/min per mg of protein for control and propylthiouracil-treated animals respectively. Administration of tri-iodothyronine resulted in an approx. 4.5-fold increase in dehydrogenase activity in propylthiouracil-treated animals. A dose-dependent increase in hepatic GSH S-transferase activity in propylthiouracil-treated animals was observed at tri-iodothyronine concentrations ranging from 2 to 200 micrograms/100 g body wt. This increase in transferase activity was seen only when 1,2-epoxy-3-(p-nitrophenoxy)propane was used as substrate for the transferase. Transferase activity with 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrate was decreased by tri-iodothyronine. Administration of actinomycin D (75 micrograms/100 g body wt.) inhibited the tri-iodothyronine induction of transferase activity. Results of these studies strongly suggest that tri-iodothyronine administration markedly affected the activities of GSH S-transferase by inducing a specific isoenzyme of GSH S-transferase and suppressing other isoenzymic activities.  相似文献   

18.
Acetaminophen (APAP)-induced nephrotoxicity is age dependent in male Sprague-Dawley rats: nephrotoxicity occurs at lower dosages of APAP in 12- to 14-month olds compared with 2- to 3-month olds. The mechanisms responsible for enhanced nephrotoxicity in 12-month-old Sprague-Dawley rats are not entirely clear, but may be related to age-dependent differences in APAP metabolism in liver and/or kidney. Major pathways of hepatic APAP metabolism include sulfation and glucuronidation; glutathione conjugation represents a pathway for detoxification of reactive oxidative APAP metabolites. The present studies were designed to quantify in vitro activity of three Phase II enzyme activities: glutathione S-transferase using 1-chloro-2,4-dinitrobenzene as substrate, UDP-glucuronyl transferase using APAP as substrate, and sulfotransferase using APAP as substrate, in subcellular fractions of liver and kidney of 3-, 12-, 18-, and 30-month-old naive male Sprague-Dawley rats. In liver, glutathione S-transferase, UDP glucuronyl transferase, and sulfotransferase activities were not significantly different in rats from 3 through 30 months of age. Renal UDP glucuronyl transferase and sulfotransferase activities were similar in rats from 3 through 30 months of age. In contrast, renal glutathione S-transferase activity was characterized by a lower Km in 12- and 30-month olds when compared with 3-month olds. These data suggest that the reduced total systemic clearance of APAP in 12-month-old male Sprague-Dawley rats previously observed cannot be attributed to age-dependent differences in hepatic APAP metabolism. In addition, it is unlikely that differences in renal APAP metabolism contribute to age-dependent APAP nephrotoxicity.  相似文献   

19.
The single glutathione S-transferase (EC 2.5.1.18) present in rat erythrocytes was purified to apparent homogeneity by affinity chromatography on glutathione-Sepharose and hydroxyapatite chromatography. Approx. 1.86 mg enzyme is found in 100 ml packed erythrocytes and accounts for about 0.01% of total soluble protein. The native enzyme (Mr 48 000) displays a pI of 5.9 and appears to possess a homodimeric structure with a subunit of Mr 23 500. Enzyme activities with ethacrynic acid and cumene hydroperoxide were 24 and 3%, respectively, of that with 1-chloro-2,4-dinitrobenzene. The Km values for 1-chloro-2,4-dinitrobenzene and glutathione were 1.0 and 0.142 mM, respectively. The concentrations of certain compounds required to produce 50% inhibition (I50) were as follows: 12 μM bromosulphophthalein, 34 μM S-hexylglutathione, 339 μM oxidized glutathione and 1.5 mM cholate. Bromosulphophthalein was a noncompetitive inhibitor with respect to 1-chloro-2,4-dinitrobenzene (Ki = 8 μM) and glutathione (Kis = 4 μM; Kii = 11.5 μM) while S-hexylglutathione was competitive with glutathione (Ki = 5 μM).  相似文献   

20.
Glutathione S-transferase (GST) from oat seedlings was purified by ammonium sulfate precipitation and glutathione (GSH) affinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of two major protein subunits with molecular masses of 29 and 31 kDa, respectively. Isoelectric focusing revealed a major band with pI of 3.43 and a minor band with pI of 7.42. Kinetic analysis with respect to 1-chloro-2,4-dinitrobenzene (CDNB) as substrate revealed a K m of 1.18 mM and V max of 0.94 mol/min and a specific activity of 17.96 mol/min/mg. Inhibition studies indicated that oat GST is strongly inhibited by chlorophyllin, hemin, and anthocyanin and only weakly by bilirubin and biliverdin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号