首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
No study has yet been carried out on seed development in a cold desert sand dune papilionoid legume. Thus, our primary aims were to (i) monitor seed development in the cold desert sand dune species Eremosparton songoricum from the time of pollination to seed maturity, and (ii) compare seed development in this species with that in other species of papilionoid legumes. Fruit and seed size, mass and seed moisture content, and seed imbibition, germination, desiccation tolerance and water retention during development (pollination to seed maturity) were monitored in the papilionaceous shrub E. songoricum in the Gurbantunggut Desert of northwest China. The duration of seed development was 40 days. Seeds reached physiological maturity 28 days after pollination (DAP), at which time 58% of them germinated and they had developed desiccation tolerance. Seeds became impermeable 36–40 DAP, when their moisture content was about 10%. The final stage of maturation drying occurred via loss of water through the hilum. The developmental stages and their timing (DAP) in seeds of E. songoricum are generally similar to those reported for other papilionaceous legumes with a water‐impermeable seed coat (physical dormancy). In general, the developmental features of seeds with water‐impermeable coats at maturity do not appear to be specific to habitat or phylogeny.  相似文献   

2.
以大白菜、萝卜、番茄和黄瓜种子为受体,采用实验室培养皿种子发芽生物测试法研究了黄瓜种子浸提液、种子萌发、胚根和芽苗分泌物、芽苗腐解物和芽苗浸提液的化感效应。结果表明:(1)黄瓜种子浸提液对大白菜、萝卜、番茄和黄瓜种子萌发均有化感抑制作用,即黄瓜种子内含有某些化感抑制物质。(2)在水浸提过的黄瓜种子萌发过程中,它不仅对其近邻套种的大白菜、萝卜和番茄种子萌发产生化感抑制作用,而且其胚根和芽苗分泌物对后茬播种的4种蔬菜种子发芽也表现出不同程度的化感抑制作用;黄瓜芽苗腐解物和芽苗水浸提液也对各受体蔬菜种子发芽与生长产生不同程度的化感抑制作用,且随着腐解芽苗量的增加或浸提液浓度的升高,各受体蔬菜种子的发芽指标值、化感效应指数值和综合效应值随之降低。(3)黄瓜种子浸提液及芽苗各器官的化感物质对黄瓜种子的萌发与生长产生了自毒作用,且黄瓜芽苗腐解物、芽苗浸提液、胚根及芽苗分泌物对受体黄瓜的自毒作用均为最大。研究发现,黄瓜种子浸提液、种子萌发时期以及芽苗各器官的化感物质主要是通过抑制受体胚根的生长而起化感抑制作用,即受体蔬菜种子胚根对化感效应最为敏感;因黄瓜种子及萌发期释放化感物质的途径有所不同,导致受体大白菜、萝卜、黄瓜和番茄的化感响应也不相同;在黄瓜种子萌发和芽苗生长的早期,化感物质即开始在芽苗体内进行合成与积累,一部分可通过胚根和芽苗分泌途径释放到环境中,另一部分可通过芽苗腐解途径释放化感物质,并对受体蔬菜种子萌发与生长表现出较强的化感抑制作用。  相似文献   

3.
As pea plants (Pisum sativum L.) cv. Finale and Solara developin the field, pods located at the second flowering node, increasein fresh and dry weight until 75 d after planting (DAP); thereafter,dry weight and moisture content decrease rapidly. Seed developmentconsists of three phases, all limited by low moisture content(MQ. The first phase (PI) corresponds to the formation of theembryo and surrounding structure (MC is stable at 85%). Duringthe second phase (P2) the cotyledons are filled (MC decreasesfrom 84% to 55%). The third phase (P3) entails desiccation onthe mother plant. Fresh and dry weight increase until 75 DAP(55% MC or physiological maturity, PM) and rapidly decreaseduring the third phase until 14% MC. Leakage conductivity ofimmature seeds reflects sap arrival in the testa and accumulationin the apoplast it is important during PI and the onset of P2,but during P2 it decreases slowly until physiological maturityand rapidly thereafter. Immature seed germination is noted from62 DAP, increases until 67 DAP, then decreases with a maximumat physiological maturity; some days after physiological maturitygermination is complete (up to 100%). Seedling growth from immatureseeds during P2 is low, but slowly increases until physiologicalmaturity. When germination (up to 100%) is attained seedlinggrowth is normal. Hydration of the immature seed indicates that55% MC is a highly specific value at which a transition in thehydration rate is occurring. Moisture loss from pea seeds duringthe P2 filling stage appears to be necessary for seed adaptationto the abrupt desiccation which occurs at physiological maturity.Physiological maturity is attained when disruption of the vascularconnection between the pod and the mother-plant occurs. Key words: Physiological maturity, germination, growth, pea  相似文献   

4.
Background and Aims Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum.Methods The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability.Key Results ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds.Conclusions The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity.  相似文献   

5.
花生果针入土后16天(16 DAP),种子干重和鲜重开始迅速增加。整个发育阶段可分为5个时期:组织分化期(0~20 DAP)、成熟前期(21~28 DAP)、成熟中期(29~40DAP)、成熟中后期(41~62 DAP)和成熟后期(63~88DAP)。种子发芽率在成熟前期和中期迅速提高并到达最大值,而苗成活率在成熟中后期达到最大值,苗鲜重则以88 DAP种子的为最大。种子发育过程中,贮藏蛋白质的合成与积累模式与种子干重变化相似。SDS-PAGE分析表明,种子发育初期(16 DAP)子叶中已积累花生球蛋白和伴花生球蛋白I。双向凝胶电泳显示花生球蛋白各个亚基在20DAP时均已存在,伴花生球蛋白I的主要亚基在整个发育过程中其等电点有所变化,含量也逐渐增加。其他蛋白质在种子发芽力形成阶段(20~40 DAP)的变化较为显著。  相似文献   

6.
Abstract

The purpose of this research was to explore the effect of temperature, light, and post-harvest period, and their interactions, on seed germination ecology of four common pasture species in the Mediterranean environment. Mature seeds of Diplotaxis erucoides, Hirschfeldia incana, Hyoseris scabra (Mediterranean distribution) and Sonchus oleraceus (cosmopolitan distribution) were subjected to seven constant temperatures (10–40°C, at intervals of 5°C) under continuous darkness, or a 12 h/12 h light/dark photoperiod at 30, 150 and 270 days after harvest (DAH). Cumulative germination and germination speed were determined. In all the tested species, except S. oleraceus, light significantly enhanced germination. S. oleraceus seeds maintained germination values over 90%, in a wide range of temperatures (10–35°C), in the dark as well as in light. Seeds of H. incana germinated well soon after seed dispersal. In D. erucoides and H. scabra, germination increased with storage period, while in S. oleraceus there was no effect of seed age. In all the species, moreover, no germination was recorded at 40°C. Temperature, light, and post- harvest requirement may be regarded as an adaptation strategy to ensure optimal conditions for seedling development and survival in Mediterranean species, while the species with a cosmopolitan distribution germinates under almost all tested conditions.  相似文献   

7.
Seed water content is high during early development of tomato seeds (10–30 d after pollination (DAP)), declines at 35 DAP, then increases slightly during fruit ripening (following 50 DAP). The seed does not undergo maturation drying. Protein content during seed development peaks at 35 DAP in the embryo, while in the endosperm it exhibits a triphasic accumulation pattern. Peaks in endosperm protein deposition correspond to changes in endosperm morphology (i.e. formation of the hard endosperm) and are largely the consequence of increases in storage proteins. Storage-protein deposition commences at 20 DAP in the embryo and endosperm; both tissues accumulate identical proteins. Embryo maturation is complete by 40 DAP, when maximum embryo protein content, size and seed dry weight are attained. Seeds are tolerant of premature drying (fast and slow drying) from 40 DAP.Thirty-and 35-DAP seeds when removed from the fruit tissue and imbibed on water, complete germination by 120 h after isolation. Only seeds which have developed to 35 DAP produce viable seedlings. The inability of isolated 30-DAP seed to form viable seedlings appears to be related to a lack of stored nutrients, since the germinability of excised embryos (20 DAP and onwards) placed on Murashige and Skoog (1962, Physiol. Plant. 15, 473–497) medium is high. The switch from a developmental to germinative mode in the excised 30- and 35-DAP imbibed seeds is reflected in the pattern of in-vivo protein synthesis. Developmental and germinative proteins are present in the embryo and endosperm of the 30- and 35-DAP seeds 12 h after their isolation from the fruit. The mature seed (60 DAP) exhibits germinative protein synthesis from the earliest time of imbibition. The fruit environment prevents precocious germination of developing seeds, since the switch from development to germination requires only their removal from the fruit tissue.Abbreviations DAP days after pollination - kDa kilodaltons - SP1-4 storage proteins 1–4 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - HASI hours after seed isolation - MS medium Murashige and Skoog (1962) medium This work is supported by National Science and Engineering Research Council of Canada grant A2210 to J.D.B.  相似文献   

8.

Background and Aims

Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds.

Methods

Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits.

Key Results

Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period.

Conclusions

Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors.  相似文献   

9.
Berry T  Bewley JD 《Plant physiology》1992,100(2):951-957
During tomato seed development the endogenous abscisic acid (ABA) concentration peaks at about 50 d after pollination (DAP) and then declines at later stages (60-70 DAP) of maturation. The ABA concentration in the sheath tissue immediately surrounding the seed increases with time of development, whereas that of the locule declines. The water contents of the seed and fruit tissues are similar during early development (20-30 DAP), but decline in the seed tissues between 30 and 40 DAP. The water potential and the osmotic potential of the embryo are lower than that of the locular tissue after 35 DAP also. Seeds removed from the fruit at 30, 35, and 60 DAP and placed ex situ on 35 and 60 DAP sheath and locular tissue are prevented from germinating. Development of 30 DAP seeds is maintained or promoted by the ex situ fruit tissue with which they are in contact. Their germination is inhibited until subsequent transfer to water, and germination is normal, i.e. by radicle protrusion, and viable seedlings are produced, compared with 30 DAP seeds transferred directly to water; more of these seeds germinate, but by hypocotyl extension, and seedling viability is very poor. Isolated seeds at 35 and 60 DAP re-placed in contact with fruit tissues only germinate when transferred to water after 7 d. At 30 DAP, isolated seeds are insensitive to ABA at physiological concentrations in that they germinate as if on water, albeit by hypocotyl extension. At higher concentrations germination occurs by radicle protrusion. Osmoticum prevents germination, but there is some recovery upon subsequent transfer to water. Seeds at 35 DAP are very sensitive to ABA and exhibit little or no germination, even upon transfer to water. The response of the isolated seeds to osmoticum more closely approximates that to incubation on the ex situ fruit tissues than does their response to ABA. This is also the case for isolated 60 DAP seeds, whose germination is not prevented by ABA, but only by the osmoticum; these seeds are inhibited when in contact with ex situ fruit tissues also. It is proposed that the osmotic environment within the tissues of the tomato fruit plays a greater role than endogenous ABA in preventing precocious germination of the developing seeds.  相似文献   

10.
The storage potential of seeds harvested at weekly intervals after controlled pollination was studied in three diverse cytoplasmic male sterile pearl millet (Pennisetum glaucum) lines. In the first experiment in 1989, a comparison of p50 (time for viability to decline to 50% during storage) among seeds of the line DSA 105A harvested 14, 21, 28, 35 and 42 days after pollination (DAP), and then stored at 35°C with 15% moisture content or 40°C with 13% moisture content, showed that those harvested 35 DAP had the greatest longevity. In the second experiment in 1990, a comparison of p50 within the lines 5141A and L 67A harvested 28, 35 and 42 DAP, and then stored at 40°C with 13% moisture content, showed that seeds of both lines harvested 42 DAP had the greatest longevity. In both the seasons, and in all three lines, maximum seed longevity (p50) was attained one week after physiological maturity (defined as the end of the grain filling period), which is therefore the optimum time of harvest to obtain good quality seeds for conservation.  相似文献   

11.
In vitro asymbiotic seed germination of Dendrobium nobile varied significantly with fruit harvesting time and growth medium used for culturing seeds. Seeds harvested 129 days after pollination (DAP) possessing globular shaped embryos and a discontinuous cuticle layer showed a substantially greater germination on P668 medium. Alternatively, immature seeds harvested 96 and 116 DAP displayed a significantly lower germination response on various growth media. Most of the ovules at 96 DAP are in archesporial and megaspore mother cell stages, whereas the majority of ovules are mature and fertilized at 116 DAP. Mature seeds harvested 158 DAP also germinated at a higher frequency at Stage 5 (emergence of the first leaf) after 8 weeks of culture on different growth media indicating the absence of testa imposed dormancy in this endangered epiphytic orchid.  相似文献   

12.
Seeds with a water‐impermeable seed coat and a physiologically dormant embryo are classified as having combinational dormancy. Seeds of Sicyos angulatus (burcucumber) have been clearly shown to have a water‐impermeable seed coat (physical dormancy [PY]). The primary aim of the present study was to confirm (or not) that physiological dormancy (PD) is also present in seeds of S. angulatus. The highest germination of scarified fresh (38%) and 3‐month dry‐stored (36%) seeds occurred at 35/20°C. The rate (speed) of germination was faster in scarified dry‐stored seeds than in scarified fresh seeds. Removal of the seed coat, but leaving the membrane surrounding the embryo intact, increased germination of both fresh and dry‐stored seeds to > 85% at 35/20°C. Germination (80–100%) of excised embryos (both seed coat and membrane removed) occurred at 15/6, 25/15 and 35/20°C and reached 95–100% after 4 days of incubation at 25/15 and 35/20°C. Dry storage (after‐ripening) caused an increase in the germination percentage of scarified and of decoated seeds at 25/15°C and in both germination percentage and rate of excised embryos at 15/6°C. Eight weeks of cold stratification resulted in a significant increase in the germination of scarified seeds at 25/15 and 35/20°C and of decoated seeds at 15/6 and 25/15°C. Based on the results of our study and on information reported in the literature, we conclude that seeds of S. angulatus not only have PY, but also non‐deep PD, that is, combinational dormancy (PY + PD).  相似文献   

13.
The germination percentage of peach [ Prunus persica (L.) Batsch cv. Halford] seeds at 20°C was low (< 20%) after incubation at 5°C for as long as 35 days, but then increased considerably (> 40%) when the seeds were maintained at 5°C for longer than 42 days. Four zones of gibberellin-like activity were found in partially purified seed extracts. Gibberellin-like activity remained low in seeds incubated at 5°C for as long as 28 days, but increased significantly in three of these zones after 35 days, and in the fourth zone after 49 days. The increase in gibberellin-like activity was evident prior to the transfer of the seeds to 20°C. Moreover, seeds maintained at 5°C germinated at this temperature after 63 days. For seeds incubated and germinated at 20°C, both the germination percentage and the gibberellin-like activity remained low throughout the experimental period. Application of the growth retardant paclobutrazol to seeds after 28 days of a 49 day total incubation period at 5°C did not substantially reduce seed germination, although the increase in gibberellin-like activity was prevented. Seeds did, however, require a longer time to germinate after transfer to 20°C and were dwarfed in appearance. Application of GA3 to seeds prior to stratification increased the percentage germination of seeds only when they had been incubated at 5°C for at least 35 days. The major changes in gibberellin-like activity are, therefore, associated not so much with the processes which allow germination to take place in peach, but more with those processes which allow normal growth and development of the seedling.  相似文献   

14.
Abstract Lesquerella stonensis (Brassicaceae) is an obligate winter annual endemic to a small portion of Rutherford County in the Central Basin of Tennessee, where it grows in disturbed habitats. This species forms a persistent seed bank, and seeds remain viable in the soil for at least 6 years. Seeds are dormant at maturity in May and are dispersed as soon as they ripen. Some of the seeds produced in the current year, as well as some of those in the persistent seed bank, afterripen during late spring and summer; others do not afterripen and thus remain dormant. Seeds require actual or simulated spring/summer temperatures to come out of dormancy. Germination occurs in September and October. Fully afterripened seeds germinate over a wide range of thermoperiods (15/6–35/20°C) and to a much higher percentage in light (14 h photoperiod) than in darkness. The optimum daily thermoperiod for germination was 30/15°C. Nondormant seeds that do not germinate in autumn are induced back into dormancy (secondary dormancy) by low temperatures (e.g., 5°C) during winter, and those that are dormant do not afterripen; thus seeds cannot germinate in spring. These seed dormancy/ germination characteristics of L. stonensis do not differ from those reported for some geographically widespread, weedy species of winter annuals and thus do not help account for the narrow endemism of this species.  相似文献   

15.
Seeds of cauliflower cv. Hipop and Brussels sprouts cv. Asmer Aries were aged at 20% moisture content for 24 h; all seeds retained a germination of over 70% after ageing although the mean germination time increased. Prolonged aerated hydration for up to 32 h at 20°C followed drying resulted in improved performance of both unaged and aged cauliflower seeds and aged Brussels sprouts. Thus, all seed showed reductions in the mean germination time to the extent that after 32 h hydration the aged cauliflower seeds performed as well as high quality unaged seed. The improvement of aged seeds was also revealed an increase in germination after the controlled deterioration test following up to 24 h (cauliflower) or 32 h (Brussels sprouts) aerated hydration. This increase was indicative of a decrease in the extent of deterioration present after aerated hydration. Deleterious effects of prolonged hydration were observed in Brussels sprouts after 32 h although these may be explained desiccation injury after treatment since radicle emergence had occurred during hydration. The improvements in seed performance may be explained the activation of metabolic repair occurring during the early part of the hydration period therereducing the extent of deterioration that has been sustained during ageing, with further improvements due to the advancement of the germination process.  相似文献   

16.
玉米种子萌发能力和耐脱水能力的形成   总被引:7,自引:0,他引:7  
以玉米品种“粤单9117”为材料,研究了种子发育过程中萌发能力和耐脱水能力的获得。玉米种子的生理成熟期约为43DAP(授粉后天数)。胚萌发能力的获得是在14-21DAP、耐脱水能力的获得出现在25-28DAP。胚的耐脱水能力在28DAP后仍不断得到加强。耐脱水能力的获得与细胞膜的发育及受保护的程度密切相关。脱水有利于不同发育时期的胚和种子的萌发。  相似文献   

17.
Suaeda aegyptiaca is a facultative halophyte found in saline and non‐saline habitats of the Arab Gulf desert, which produces small‐sized undispersible seeds. The interactive effects of maternal salinity and other environmental conditions, such as salinity, light and temperatures, that are prevailing during seed germination have received little attention for a facultative halophyte. This study tested the effects of maternal salinity on salt tolerance during seed germination of S. aegyptiaca under different light and temperature regimes. Seeds collected from both saline and non‐saline habitats of the United Arab Emirates (UAE) were germinated in 0, 50, 100, 200 and 400 mM NaCl, and incubated at 15/25°C, 20/30°C and 25/35°C in both 12‐h light/12‐h dark regimes and continuous darkness. Generally, seeds of the non‐saline habitat were 56% heavier and attained greater germination at the lower temperatures than seeds of the saline habitat. Seeds of the saline habitat germinated better in saline solutions at higher temperatures and in light. Germination was faster for seeds of the saline habitat than for seeds of non‐saline habitats. Germination recovery after transfer to distilled water was significantly greater for seeds from the non‐saline habitat, compared with seeds from saline habitats. Recovery was greater at lower and/or moderate temperatures, compared with at higher temperatures. Germination was significantly faster during recovery, compared with in the saline solutions. The study indicates that the maternal effect of salinity was confounded with the seed‐size effect and it cannot be conclusively confirmed.  相似文献   

18.

Background and Aims

The ‘hinged valve gap’ has been previously identified as the initial site of water entry (i.e. water gap) in physically dormant (PY) seeds of Geranium carolinianum (Geraniaceae). However, neither the ontogeny of the hinged valve gap nor acquisition of PY by seeds of Geraniaceae has been studied previously. The aims of the present study were to investigate the physiological events related to acquisition of PY and the ontogeny of the hinged valve gap and seed coat of G. carolinianum.

Methods

Seeds of G. carolinianum were studied from the ovule stage until dispersal. The developmental stages of acquisition of germinability, physiological maturity and PY were determined by seed measurement, germination and imbibition experiments using intact seeds and isolated embryos of both fresh and slow-dried seeds. Ontogeny of the seed coat and water gap was studied using light microscopy.

Key Results

Developing seeds achieved germinability, physiological maturity and PY on days 9, 14 and 20 after pollination (DAP), respectively. The critical moisture content of seeds on acquisition of PY was 11 %. Slow-drying caused the stage of acquisition of PY to shift from 20 to 13 DAP. Greater extent of cell division and differentiation at the micropyle, water gap and chalaza than at the rest of the seed coat resulted in particular anatomical features. Palisade and subpalisade cells of varying forms developed in these sites. A clear demarcation between the water gap and micropyle is not evident due to their close proximity.

Conclusions

Acquisition of PY in seeds of G. carolinianum occurs after physiological maturity and is triggered by maturation drying. The micropyle and water gap cannot be considered as two separate entities, and thus it is more appropriate to consider them together as a ‘micropyle–water-gap complex’.  相似文献   

19.
Irrigation of rapid-cycling brassica (Brassica campestris [rapa]L.)plants either ended 16 or 24 days after pollination (DAP) orcontinued throughout the experiment (control). Seeds were harvestedserially from these plants during their development and maturation.The earlier irrigation to the mother plant ended, the earliermass maturity (end of seed-filling phase) occurred, the lowerthe final seed dry weight, and the more rapid the decline inseed moisture content. The onset of ability to germinate normallyoccurred as early as 12 DAP, when seeds were less than half-filled.The onset of ability to tolerate rapid enforced desiccation(to 10% moisture content) occurred at 16 DAP. Desiccation tolerancedeveloped within most seeds in both populations about 5 d soonerin seeds harvested from plants in which irrigation was stoppedat 16 DAP than in control plants, but maximum desiccation toleranceoccurred at about 28 DAP in all treatments. Survival curves(percentage normal germinationvs.period of storage) of seedshermetically stored at 40 °C with 15% moisture content conformedto negative cumulative normal distributions, and provided acommon estimate of the standard deviation of the frequency distributionof seed deaths in time for seed lots harvested at differenttimes from the three environments (  相似文献   

20.
A study was conducted to investigate the physiological responses of greenhouse-produced Oxalis corniculata seeds to light, temperature, moist heat treatment, aging, and season of production. Fresh seeds exhibited over 90% germination and required low levels of light (5 μmol m-2 s-1, 400–700 nm) to germinate. Seeds germinated over a broad, yet seasonally-dependent range of incubation temperatures. Seeds produced in winter had the narrowest temperature range of germination (15 to 25 C) and the lowest germination percent (44% at 2 wk) at optimum temperature (17 C); seeds produced in summer had the widest temperature range of germination (10 to 30 C) and the highest germination percent (93% at 2 wk) at optimum temperature (17 C). Incubation at non-optimum temperatures between 5 and 40 C suppressed or slowed the rate of germination until seeds were placed at optimum temperature, where full germination subsequently occurred. Moist heat treatment at temperatures over 40 C resulted in varying degrees of inhibition of subsequent germination. When seeds were stored dry in laboratory conditions, three of four seed lots examined retained over 80% germination capacity until ca. 8 months; 50% capacity remained after ca. 15 months. These results indicate that the seasonal temperature and daylength effects on maternal plants in the greenhouse environment are major determinants of seed germination characteristics of O. corniculata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号